In vivo bio-imaging Mice were anesthetized and placed in a custom-made bed, which allowed stable and reproducible imaging of the legs. In vivo scanning was performed using the Optix MX-2 Optical Molecular Image System (Advanced Research Technologies, Montreal, Canada), which uses time domain optical imaging. In time domain optical imaging, short pulses of light driven by pulsed laser diodes are used to illuminate the organism under study and excite fluorescent molecules. Time-of-flight distribution enables depth and concentration to be uncoupled and fluorescence lifetime to be determined. For Katushka, excitation was performed with a 635-nm (LDH-P-635) pulsing laser and emission was detected with a 650 long pass filter, while excitation of GFP was performed with a 470-nm pulsing laser and emission was detected through a 525-nm band pass filter. The scan was performed over a Cartesian grid in prioritized raster fashion, and each scan took on average 5 min.
Data analysis Data analysis was performed using the Optiview 2.2 software (ART Advanced Research Technologies Inc., Canada) supplied with the ART Optix bioimager. The software is used for background subtraction, lifetime analysis of the fluorochromes, depth and concentration analysis, and generation of 3D images.
The temporal dispersion of fluorescent photons is measured by time-correlated single photon counting (TCSPC) after excitation of a fluorophore by laser pulse. Analysis of this temporal dispersion curve—the fluorescent temporal point spread function (TPSF)—is used to obtain information of the in vivo fluorophore depth, concentration, and lifetime. Based on the Optix machine settings, the user will be able measure temporal and spatial distribution of fluorophores in regions in tissue: the light intensity is measured as a function of arrival time in nanoseconds, where the signal from deeper tissues arrives later allowing the estimation of relative concentration difference.
Results
Efficiency of Katushka expression in muscles over time
Electrotransfer of 5 μg of pTurboFP635 (‘Katushka’) plasmid resulted in a large increase in the in vivo fluorescent intensity (mean peak value?=?18,695?±?5,242 NC, n?=?8) from the transfected muscle (Fig. 1). The Katushka intensity peaked 1 week after electrotransfer, where after it leveled off and returned to background level within 4 weeks (Fig. 2). To examine the sensitivity of the in vivo analysis compared with ex vivo scans, the muscles were excised at 4 weeks and scanned. Even though Katushka expression could not be detected in vivo, residual Katushka expression was present in muscles when scanned ex vivo (Fig. 3).
Fig. 1 Time course of the intensity of Katushka expression in muscles after DNA electrotransfer. The left leg was transfected, while the right leg served as untreated control. The picture series was taken of the same mouse, but is representative of seven mice.
Fig. 2 Time course of a Katushka intensity (mean?±?SD) and b Katushka lifetime (mean?±?SD) in a scanning series of seven mice following DNA electrotransfer of 5 μg Katushka plasmid.
Fig. 3 Four weeks after DNA electrotransfer, the muscles were scanned in vivo (left image), and then excised and scanned ex vivo with the same settings (right image).
近日,大眾集團旗下的軟件公司CARIAD中國宣布,與中國頂尖的智能手機制造商vivo共同創建“手車互融聯合創新實驗室”(英文名:MobilexMobilityFusionJointInnovative......
近日,中國科學院大連化學物理研究所生物技術研究部生物分子高效分離與表征研究組研究員趙群、張麗華等,與中國科學院精密測量科學技術創新研究院副研究員龔洲合作,提出了利用原位化學交聯-質譜技術(invivo......
2023年1月5日,布魯克公司(納斯達克股票代碼:BRKR)宣布收購 ACQUIFERImagingGmbH,該公司是生物成像和高內涵顯微鏡大......
萬物蓬勃的7月里迎來了2022年ANTOP獎的申報和評審工作。由島津企業管理(中國)有限公司申報的“3CoinONE全新體驗氣袋進樣器”ANTOP獎進入專家評審階段。獎項名稱:3CoinONE全新體驗......
青島青源峰達太赫茲科技有限公司研發團隊在國際頂級期刊《TrendsinBiotechnology》(譯名:《生物技術趨勢》)在線發表題為“THzmedicalimaging:frominvitroto......
蛋白質作為構成人體組織器官的支架和主要物質,在人體生命活動中起著重要作用。蛋白質的相互作用能產生許多效應,如形成特異底物作用通道、生成新的結合位點、失活、作用底物專一性和動力學變化等,細胞的代謝、信號......
2021年9月9日,無錫臻和生物科技有限公司(以下簡稱“臻和科技”)與美國VyantBio公司簽署TissueofOrigin?(以下簡稱“TOO?”)全球權益和ZL轉讓協議,全資收購這款唯一獲FDA......
2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同時撤回了中國學者49篇文章。從2019年開始,Journalo......
安進宣布,美國FDA授予其在研firstinclass單抗bemarituzumab突破性療法認定,與改良FOLFOX6化療方案(亞葉酸鈣、氟尿嘧啶和奧沙利鉑)聯用,一線治療FGFR2b過表達和HER......
2007年,中國科學院金屬研究所研究員張志東在英國《哲學雜志》(PhilosophicalMagazine)上發表論文,提出兩個猜想,并在猜想基礎上推定出三維伊辛模型的精確解。被《哲學雜志》審稿人評價......