• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>

  • 雙光子成像和光聲成像的區別

    特點、性質。雙光子成像和光聲成像的區別在于特點、性質。1、特點:光聲成像能夠實現高特異性光譜組織的選擇激發。雙光子成像能夠調節分辨率和成像深度,是近年來新興的成像技術。2、性質:光聲成像 結合了光學成像和聲學成像的優點。雙光子是近紅外(NIR)一區(750-1000nm)和NIR二區(1000-1700nm)熒光成像的激發波長在生物光學窗口范圍內。......閱讀全文

    雙光子成像和光聲成像的區別

    特點、性質。雙光子成像和光聲成像的區別在于特點、性質。1、特點:光聲成像能夠實現高特異性光譜組織的選擇激發。雙光子成像能夠調節分辨率和成像深度,是近年來新興的成像技術。2、性質:光聲成像 結合了光學成像和聲學成像的優點。雙光子是近紅外(NIR)一區(750-1000nm)和NIR二區(1000-17

    LaVision雙光子顯微鏡多線掃描雙光子成像(二)

    2. 方法與結果??? 為了從激光掃描顯微鏡的功能性成像中得出重要結論,一個高的時間分辨率是很重要的。在低光情況下,這通常通過進行單線掃描來獲取。這被以一個垂直系統(VS)神經元的突觸前分支的激光共聚焦(Leica SP2)鈣離子成像示例 (see Fig. 1, Table 1). 這類神

    LaVision雙光子顯微鏡多線掃描雙光子成像(三)

    2.2.多線TPLSM中通過成像檢測釋放光??? 在單光束TPLSM中,光電倍增管PMT或者雪崩二極管APD可以很方便地用于釋放光檢測,由于雙光子激發的原理,激發只發生在激光焦點處。因此,用于屏蔽離焦光線的共焦小孔變得不必要,并且可以使用NDD檢測。這意味著激發光不會被送回掃描鏡,而是直接進入位于靠

    LaVision雙光子顯微鏡多線掃描雙光子成像(四)

    2.3. 多線TPLSM中的獲取模式??? 我們以兩種獲取模式操作多線TPLSM:第一種,整個研究使用所謂“幀掃描”模式,以64束激光在X、Y方向掃描樣品。因此焦平面上激發了均一性照明,假定光束陣列的橫向步長尺寸沒有過于粗糙(通常使用≤400 nm的步長尺寸)。在Fig. 3A,展示了以“幀

    LaVision雙光子顯微鏡多線掃描雙光子成像(一)

    Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,?, Matthi

    多光子顯微鏡成像技術:雙光子顯微鏡角膜成像

    角膜提供了眼睛的大部分折射能力,由5層組成(圖1),從外到內依次是上皮層,鮑曼層、基質、角膜后彈力層(間質膜)、內皮層。 wx_article_20200815180121_819doe.jpg 圖1 角膜的組織學結構 上皮層負責阻擋異物落入角膜,厚約50μm,由三

    多光子顯微鏡成像技術:雙光子顯微鏡角膜成像

    角膜提供了眼睛的大部分折射能力,由5層組成(圖1),從外到內依次是上皮層,鮑曼層、基質、角膜后彈力層(間質膜)、內皮層。圖1 角膜的組織學結構上皮層負責阻擋異物落入角膜,厚約50μm,由三種細胞構成,從外到內依次是表層細胞、翼細胞和基底細胞。只有基底細胞可進行有絲分裂和分化,基底細胞的補充是由從角膜

    氮摻雜石墨烯量子點在雙光子熒光成像研究取得進展

      雙光子熒光成像技術具有近紅外激發、避免光毒作用和光漂白、自發熒光干擾弱及較深的組織穿透深度等優點,在生物醫藥領域研究中受到極大關注。開發具有高雙光子吸收截面、生物相溶性好的材料作為雙光子熒光探針,是活細胞和深層組織成像研究領域的關鍵和熱點。   國家納米科學中心宮建茹研究組以氧化石墨烯為前驅體

    LaVision雙光子顯微鏡腫瘤生長與入侵動態成像(一)

    Dynamic imaging of cancer growth and invasion: a modiWedskin-fold chamber modelStephanie Alexander · Gudrun E. Koehl ·Markus Hirschberg · Edward K. Ge

    LaVision雙光子顯微鏡腫瘤生長與入侵動態成像(二)

    Fig 2. 腫瘤生長階段。 a 由落射熒光顯微鏡監測的移植瘤生長和入侵的時間進程。新生血管的插入,不存在(3天)和存在(7天)。標尺1mm。b 通過以day 1的體積進行歸一化的腫瘤體積。mean+-SD(n=9)。c HT-1080移植腫瘤在6天的時候的腫瘤形態,血管化,分生和凋亡。

    LaVision雙光子顯微鏡腫瘤生長與入侵動態成像(三)

    Fig 4. HT-1080雙色細胞的原位入侵模型。a 注射后6天入侵類型的分類。缺少入侵(上,左)并且散布單個細胞(上,右;白色箭頭),散射的或者緊密地絲狀整體入侵(下圖)。標尺250um。 b 45個連續的非依賴性腫瘤的按中所分入侵模式的頻率。11天時,沿著紋狀肌肉纖維集體入侵絲的定位。

    Lavision雙光子顯微鏡毛囊再生過程活體成像(二)

    Figure 2 |生長過程中處于形態重組的干細胞progeny隔層. a, 毛囊生長中的向下伸展。生長狀態的活毛囊三個連續時間點(3小時間隔)的光學切片,展示了progeny組分向下的伸展(左三) 。核間距增加,干細胞和progen隔層(大約生長初期 II to IIIa)中的總細胞數被定

    Lavision雙光子顯微鏡毛囊再生過程活體成像(一)

    Live imaging of stem cell and progeny behaviour in physiological hair-follicle regenerationPanteleimon Rompolas1, Elizabeth R. Deschene1*, Giovanni

    雙光子顯微鏡的雙光子顯微鏡的優勢

    雙光子熒光顯微鏡有很多優點:1)長波長的光比短波長的光受散射影響較小容易穿透標本;2)焦平面外的熒光分子不被激發使較多的激發光可以到達焦平面,使激發光可以穿透更深的標本;3)長波長的近紅外光比短波長的光對細胞毒性小;4)使用雙光子顯微鏡觀察標本的時候,只有在焦平面上才有光漂白和光毒性。所以,雙光子顯

    LaVision雙光子顯微鏡無損傷無標記THG成像(一)

    Label-free live brain imaging and targeted patching with third-harmonic generation microscopyStefan Wittea,b,1, Adrian Negreana,b,c, Johannes C. Lodde

    LaVision雙光子顯微鏡無損傷無標記THG成像(三)

    Fig. 4.THG成像深度與自動化細胞檢測 (A–C) 小鼠額前葉皮質的THG圖像,成像深度分別為100, 200, and 300 μm 。每幅圖像都是3個以2微米深度間隔獨立圖像的最大密度投影(D) 110 μm深度處神經元細胞的自動檢測THG圖像。細胞檢測的運算法則定義為以紅色顯示的

    Nature子刊:高速雙光子顯微鏡可用于小鼠大腦成像

      近日,美國斯坦福大學Mark J. Schnitzer及其研究小組研發出可用于清醒小鼠大腦成像的千赫茲雙光子顯微鏡。這一研究成果于2019年10月28日在線發表于國際學術期刊《自然—方法學》。  研究人員介紹,雙光子顯微鏡是在散射介質中成像的主要技術,通常可提供約10–30 Hz的幀采集速率。 

    鄭煒團隊在高分辨雙光子顯微成像技術中取得進展

      近日,中國科學院深圳先進技術研究院研究員鄭煒團隊在高分辨雙光子顯微成像技術研發中取得系列進展。  第一項研究工作與華中科技大學教授費鵬團隊合作完成,開發出基于多幀重構提高雙光子成像軸向分辨率的方法。與傳統雙光子成像相比,該方法對成像軸向分辨率和信噪比均提升超過3倍。相關研究成果以Axial re

    利用雙光子活體成像的方式對角膜干細胞進行觀察記錄

      復層扁平上皮又被稱為復層鱗狀上皮(Stratified squamous epithelia),通常存在于皮膚、食道以及口腔等部位的表面,會經歷不斷的再生過程,在此過程中終末分化的細胞從表面脫落并由具有干性的細胞進行補充。由于細胞不斷丟失,復層扁平上皮必須處于一種動態平衡狀態,以維持其組織結構和

    上海市活體雙光子成像系統采購項目公開招標公告

    項目概況上海市重大傳染病和生物安全研究院活體雙光子成像系統采購項目 招標項目的潛在投標人應在財瑞采購云平臺(http://crzb.cairui.com.cn)獲取招標文件,并于2022年04月11日 14點00分(北京時間)前遞交投標文件。一、項目基本情況項目編號:1825-224A2021229

    LaVision雙光子顯微鏡無損傷無標記THG成像(二)

    主要結果Fig. 1.無標記活體大腦的三次諧波顯微成像(A)腦組織THG成像的epidetection幾何學圖示。插圖:THG原理。注意基質中沒有光學激發發生。(B) 樹突處的聚焦激光束。通過將激光聚焦體積設定到樹突直徑的幾倍大小,可以獲得部分相匹配,顯著的THG信號將會產生。(C)細胞

    LSCM的雙光子技術

    近年來LSCM推出了雙光子技術,即利用兩個低能量激發光子激發一個熒光分子,其熒光波長等于一個高能量單光子直接激發一個熒光分子,卻降低熒光損耗,并具有更高的激發功率和穩定的穿透力,從而提高圖片分辨率,值得進行嘗試和應用。總之,LSCM技術因其簡單易行的前期處理、高辨識度的后期成像及無損于樣品等優勢,將

    有機雙光子熒光染料在生物成像中的應用取得新進展

      傳統的熒光分子多數會有聚集誘導淬滅效應(Aggregation Caused Quenching, ACQ),限制了其應用。聚集誘導發光(Aggregation Induced Emission, AIE)熒光分子不同于傳統的熒光分子,在聚集的條件下產生熒光,具有生物相容性好、背景熒光較低等特點

    有機雙光子熒光染料在生物成像中的應用取得新進展

      傳統的熒光分子多數會有聚集誘導淬滅效應(Aggregation Caused Quenching, ACQ),限制了其應用。聚集誘導發光(Aggregation Induced Emission, AIE)熒光分子不同于傳統的熒光分子,在聚集的條件下產生熒光,具有生物相容性好、背景熒光較低等特點

    “超高時空分辨微型化雙光子在體顯微成像系統”獲進展

      在國家自然科學基金國家重大科研儀器研制專項“超高時空分辨微型化雙光子在體顯微成像系統”(項目編號:31327901)的支持下,北京大學分子醫學研究所、信息科學技術學院、動態成像中心、生命科學學院、工學院聯合中國人民解放軍軍事醫學科學院組成跨學科團隊,歷經三年多的協同奮戰,成功研制新一代高速高分辨

    LaVision雙光子顯微鏡亞細胞水平的深層組織成像(一)

    紅外雙(多)光子顯微鏡:亞細胞水平的深層組織成像Volker Andresen1,2, Stephanie Alexander1, Wolfgang-Moritz Heupel1, Markus Hirschberg1, Robert M Hoffman3 and Peter Friedl1,4Cu

    LaVision雙光子顯微鏡亞細胞水平的深層組織成像(二)

    系統性能和Ti:Sa與OPO激光的同時使用??? 為了同時獲取樣品Ti:Sa和OPO的激發,一個分光器將Ti:Sa激光分解為泵浦OPO光束和直接成像光束(Figure 1a). 分光比例取決于足夠激發所需的光亮,先后依賴于樣品特征(光密度,連續性和熒光團吸收截面)和想要的成像深度。在實際應用

    LaVision雙光子顯微鏡亞細胞水平的深層組織成像(三)

    Figure 2 NIR和IR雙光子激發和釋放光譜。通過在同一焦平面對不同波長的Ti:Sa激光和OPO激光獲取多幅圖像并對掃描間的能量強度和漂白進行校正后的激發光譜。為獲取紅色和內在熒光團以及SHG的釋放光譜,信號通過物鏡,光譜儀和CCD相機檢測。 (a) 自然狀態下,SDS-PAGE前后的

    LaVision雙光子顯微鏡亞細胞水平的深層組織成像(四)

    Figure 4.IR-MPM的光漂白,光毒性和組織穿透性. (a)以75mW能量的760, 880, and 1100 nm 激發波長連續掃描的釋放光的下降時測量的DsRed2光漂白。樣品被進行250次連續掃描,釋放光強度以整個掃描區域的平均像素強度量化,并對首幅圖像強度歸一化。虛線表明了

    LaVision雙光子顯微鏡亞細胞水平的深層組織成像(五)

    結論??? 這些結果表明紅外雙光子和二次諧波產生顯微成像對于無毒害的時間分辨的細胞行為調查的深層組織成像尤其有利。作為與其它脈沖飛秒激光系統相比的優勢,如Ch:forsterite (1230 nm) 和 Fianium fiber (1064 nm) 激光器,OPO產生的波長是可調諧的

    人体艺术视频