原子熒光光譜法的原理簡介
原子熒光光譜法是通過測量待測元素的原子蒸氣在輻射能激發下產生的熒光發射強度,來確定待測元素含量的方法。 氣態自由原子吸收特征波長輻射后,原子的外層電子從基態或低能級躍遷到高能級經過約10-8s,又躍遷至基態或低能級,同時發射出與原激發波長相同或不同的輻射,稱為原子熒光。原子熒光分為共振熒光、直躍熒光、階躍熒光等。 發射的熒光強度和原子化器中單位體積該元素基態原子數成正比,式中:I f為熒光強度;φ為熒光量子效率,表示單位時間內發射熒光光子數與吸收激發光光子數的比值,一般小于1;Io為激發光強度;A為熒光照射在檢測器上的有效面積;L為吸收光程長度;ε為峰值摩爾吸光系數;N為單位體積內的基態原子數。 原子熒光發射中,由于部分能量轉變成熱能或其他形式能量,使熒光強度減少甚至消失,該現象稱為熒光猝滅。......閱讀全文
原子熒光光譜法的原理簡介
原子熒光光譜法是通過測量待測元素的原子蒸氣在輻射能激發下產生的熒光發射強度,來確定待測元素含量的方法。 氣態自由原子吸收特征波長輻射后,原子的外層電子從基態或低能級躍遷到高能級經過約10-8s,又躍遷至基態或低能級,同時發射出與原激發波長相同或不同的輻射,稱為原子熒光。原子熒光分為共振熒光、直
科普小知識:原子熒光光譜法原理簡介
原子熒光光譜分析法是20世紀六十年代中期以后發展起來的一種新的痕量分析方法。原子蒸氣受到具有特征波長的光源照射后,其中一些自由原子被激發躍遷到較高能態,然后活回到某一較低能態(常常是基態)而發射出的特征光譜叫做原子熒光。各種元素都有其特定的原子熒光光譜,根據原子熒光強度的高低可測得試樣中待測元素的含
原子熒光光譜法簡介
原子熒光光譜法( AFS) 因化學蒸氣分離、非色散光學系統等特性,是測定微量砷、銻、鉍、汞、硒、碲、鍺等元素最成功的分析方法之一。
原子熒光光譜法的簡介
原子熒光光譜法(AFS)是介于原子發射光譜(AES)和原子吸收光譜(AAS)之間的光譜分析技術。它的基本原理是基態原子(一般蒸汽狀態)吸收合適的特定頻率的輻射而被激發至高能態,而后激發過程中以光輻射的形式發射出特征波長的熒光。
原子熒光光譜法的原理
原子熒光光譜法是通過測量待測元素的原子蒸氣在輻射能激發下產生的熒光發射強度,來確定待測元素含量的方法。氣態自由原子吸收特征波長輻射后,原子的外層電子從基態或低能級躍遷到高能級經過約10-8s,又躍遷至基態或低能級,同時發射出與原激發波長相同或不同的輻射,稱為原子熒光。原子熒光分為共振熒光、直躍熒光、
關于原子熒光光譜法的簡介
原子熒光光譜法( AFS) 因化學蒸氣分離、非色散光學系統等特性,是測定微量砷、銻、鉍、汞、硒、碲、鍺等元素最成功的分析方法之一。 原子熒光光譜法(AFS)是介于原子發射光譜(AES)和原子吸收光譜(AAS)之間的光譜分析技術。它的基本原理是基態原子(一般蒸汽狀態)吸收合適的特定頻率的輻射而被
原子熒光光譜法的原理及特點
原子熒光光度計利用惰性氣體氬氣作載氣,將氣態氫化物和過量氫氣與載氣混合后,導入加熱的原子化裝置,氫氣和氬氣在特制火焰裝置中燃燒加熱,氫化物受熱以后迅速分解,被測元素離解為基態原子蒸氣,其基態原子的量比單純加熱砷、銻、鉍、錫、硒、碲、鉛、鍺等元素生成的基態原子高幾個數量級。
原子熒光光譜法原理簡要分析
原子熒光光譜分析法是20世紀六十年代中期以后發展起來的一種新的痕量分析方法。原子蒸氣受到具有特征波長的光源照射后,其中一些自由原子被激發躍遷到較高能態,然后活回到某一較低能態(常常是基態)而發射出的特征光譜叫做原子熒光。各種元素都有其特定的原子熒光光譜,根據原子熒光強度的高低可測得試樣中待測元素的含
原子熒光光譜法基本原理
基本原理原子熒光光譜法是通過測量待測元素的原子蒸氣在輻射能激發下產生的熒光發射強度,來確定待測元素含量的方法。氣態自由原子吸收特征波長輻射后,原子的外層電子從基態或低能級躍遷到高能級經過約10-8s,又躍遷至基態或低能級,同時發射出與原激發波長相同或不同的輻射,稱為原子熒光。原子熒光分為共振熒光、直
紅外光譜法的原理簡介
紅外線和可見光一樣都是電磁波,而紅外線是波長介于可見光和微波之間的一段電磁波。紅外光又可依據波長范圍分成近紅外、中紅外和遠紅外三個波區,其中中紅外區(2.5~25μm;4000~400cm-1)能很好地反映分子內部所進行的各種物理過程以及分子結構方面的特征,對解決分子結構和化學組成中的各種問題
關于原子熒光光譜法的基本原理介紹
原子熒光光譜法是通過測量待測元素的原子蒸氣在輻射能激發下產生的熒光發射強度,來確定待測元素含量的方法。 氣態自由原子吸收特征波長輻射后,原子的外層電子從基態或低能級躍遷到高能級經過約10-8s,又躍遷至基態或低能級,同時發射出與原激發波長相同或不同的輻射,稱為原子熒光。原子熒光分為共振熒光、直
原子熒光光譜法
方法提要在一定酸度下,溴酸鉀與溴化鉀反應生成溴,可將試樣消解,使所含汞全部轉化為二價無機汞,用鹽酸羥胺還原過剩的氧化劑,再用氯化亞錫將二價汞還原為單質汞,用氬氣作載氣,將其引入原子熒光光譜儀測量熒光強度。方法最低檢測質量為0.5ng。取5mL水樣測定,檢測下限為0.1μg/L。儀器和裝置無色散原子熒
原子熒光光譜法的優點
原子熒光光譜法的優點:(1)有較低的檢出限,靈敏度高。特別對Cd、Zn等元素有相當低的檢出限,Cd可達0.001ng/cm、Zn為0.04ng/cm現已有2O多種元素低于原子吸收光譜法的檢出限。由于原子熒光的輻射強度與激發光源成比例,采用新的高強度光源可進一步降低其檢出限。(2)干擾較少,譜線比較簡
原子熒光光譜法的優點
原子熒光光譜法的優點:(1)有較低的檢出限,靈敏度高。特別對Cd、Zn等元素有相當低的檢出限,Cd可達0.001ng/cm、Zn為0.04ng/cm現已有2O多種元素低于原子吸收光譜法的檢出限。由于原子熒光的輻射強度與激發光源成比例,采用新的高強度光源可進一步降低其檢出限。(2)干擾較少,譜線比較簡
原子熒光光譜法介紹
原子熒光光譜法( AFS) 因化學蒸氣分離、非色散光學系統等特性,是測定微量砷、銻、鉍、汞、硒、碲、鍺等元素最成功的分析方法之一。
原子發射光譜法與原子熒光光譜法在原理上有什么不同
原子熒光光譜是原子吸收輻射之后提高到激發態,再回到基態或臨近基態的另一能態,將吸收的能量以輻射形式沿各個方向放出而產生的發射光譜。以sk-2003a為例,待測樣品溶液和還原劑以ZL技術連續流動進樣技術進入多功能反應模塊進行氫化反應,以壓力自平衡方式自動排出廢液,反應后的被測元素氫化物氣體、氬氣、氫氣
原子發射光譜法與原子熒光光譜法在原理上有什么不同
原子熒光光譜是原子吸收輻射之后提高到激發態,再回到基態或臨近基態的另一能態,將吸收的能量以輻射形式沿各個方向放出而產生的發射光譜。以sk-2003a為例,待測樣品溶液和還原劑以ZL技術連續流動進樣技術進入多功能反應模塊進行氫化反應,以壓力自平衡方式自動排出廢液,反應后的被測元素氫化物氣體、氬氣、氫氣
簡介原子熒光光譜法在肥料重金屬檢測中的優勢
以檢測肥料中砷為例。二乙基二硫代氨基甲酸銀分光光度法、砷斑法以及原子熒光法檢測肥料中砷時,樣品前處理的方法類似,都是適量樣品在王水環境中用電熱板加熱消解,趕酸。冷卻后用鹽酸溶解,加熱溶解。冷卻至室溫后定容待測。可以說在樣品前處理中原子熒光法與另外兩種方法相近。 二乙基二硫代氨基甲酸銀分光光度法
原子熒光光譜法的應用介紹
測量待測元素的原子蒸氣在一定波長的輻射能激發下發射的熒光強度進行定量分析的方法。原子熒光的波長在紫外、可見光區。氣態自由原子吸收特征波長的輻射后,原子的外層電子從基態或低能態躍遷到高能態,約經10-8秒,又躍遷至基態或低能態,同時發射出熒光。若原子熒光的波長與吸收線波長相同,稱為共振熒光;若不同
原子熒光光譜法的應用介紹
測量待測元素的原子蒸氣在一定波長的輻射能激發下發射的熒光強度進行定量分析的方法。原子熒光的波長在紫外、可見光區。氣態自由原子吸收特征波長的輻射后,原子的外層電子從基態或低能態躍遷到高能態,約經10-8秒,又躍遷至基態或低能態,同時發射出熒光。若原子熒光的波長與吸收線波長相同,稱為共振熒光;若不同,則
原子熒光光譜法的優缺點
原子熒光光譜法的基本原理:物質吸收電磁輻射后受到激發,受激原子或分子以輻射去活化,再發射波長與激發輻射波長相同或不同的輻射。 原子熒光光譜法有哪些優缺點? 原子熒光光譜法的基本原理:物質吸收電磁輻射后受到激發,受激原子或分子以輻射去活化,再發射波長與激發輻射波長相同或不同的輻射。當激發光源停止輻
什么是原子熒光光譜法?
原子熒光光譜法(AFS)是介于原子發射光譜(AES)和原子吸收光譜(AAS)之間的光譜分析技術。原子熒光光譜法( AFS) 因化學蒸氣分離、非色散光學系統等特性,是測定微量砷、銻、鉍、汞、硒、碲、鍺等元素最成功的分析方法之一。它的基本原理是基態原子(一般蒸汽狀態)吸收合適的特定頻率的輻射而被激發
原子熒光光譜法發展歷史
1964年,Winefordner等首先提出用原子熒光光譜(AFS) 作為分析方法的概念。1969年,Holak研究出氫化物氣體分離技術并用于原子吸收光譜法測定砷。1974年,Tsujiu等將原子熒光光譜和氫化物氣體分離技術相結合,提出了氣體分離-非色散原子熒光光譜測定砷的方法,這種聯合技術也是現代
原子發射光譜法和原子熒光光譜法的區別
原子在受到熱或電的激發時,由基態躍遷到激發態,返回到基態時,發射出特征光譜叫做原子發射光譜,而根據處于激發態的待測元素原子回到基態時發射的特征譜線對待測元素進行分析的方法稱為原子發射光譜。ICP-AES的特點是可以進行多元素檢測,選擇性高,檢出限低,準確度高。原子熒光光譜是基于基態原子吸收特定波長光
原子熒光光譜法的相關說明
原子熒光光譜法(AFS)是介于原子發射光譜(AES)和原子吸收光譜(AAS)之間的光譜分析技術。它的基本原理是基態原子(一般蒸汽狀態)吸收合適的特定頻率的輻射而被激發至高能態,而后激發過程中以光輻射的形式發射出特征波長的熒光。 說明:測量待測元素的原子蒸氣在一定波長的輻射能激發下發射的熒光強度
原子熒光光譜法的優點有哪些?
采用原子熒光光譜法進行測定時具有如下優點: 1?使用原子熒光光譜儀進行檢測,有較低的檢出限,靈敏度高。特別是對Cd、Zn等元素有相當低的檢出限,Cd可達0.001ng/cm3、Zn為0.04ng/cm3。現已有20多種元素低于原子吸收光譜法的檢出限。由于原子熒光的輻射強度與激發光源成比例,采用
關于原子熒光光譜法應用的介紹
測量待測元素的原子蒸氣在一定波長的輻射能激發下發射的熒光強度進行定量分析的方法。原子熒光的波長在紫外、可見光區。氣態自由原子吸收特征波長的輻射后,原子的外層電子從基態或低能態躍遷到高能態,約經10-8秒,又躍遷至基態或低能態,同時發射出熒光。若原子熒光的波長與吸收線波長相同,稱為共振熒光;若不同
簡述原子熒光光譜法的發展歷史
1964年,Winefordner等首先提出用原子熒光光譜(AFS) 作為分析方法的概念。1969年,Holak研究出氫化物氣體分離技術并用于原子吸收光譜法測定砷。1974年,Tsujiu等將原子熒光光譜和氫化物氣體分離技術相結合,提出了氣體分離-非色散原子熒光光譜測定砷的方法,這種聯合技術也是
原子熒光光譜法有哪些貢獻?
我國科技工作者為原子熒光光譜分析的發展作出了重要貢獻: 發明了高強度空心陰極燈、小火焰原子化、自動低溫點火裝置等許多ZL技術; 研制出多通道、氫化物與火焰原子化一體和六價鉻檢測等多種原子熒光光譜儀; 研究出鉛、鋅、鉻和鎘的新化學蒸氣發生體系和專用試劑,以及碘、鉬間接測定方法; 出版了 5 部專著
氫化物原子熒光光譜法
方法提要在酸性介質中,水樣中的鉛與以硼氫化鈉或硼氫化鉀反應生成鉛的揮發性氫化物(PbH4),原子熒光光譜法測定。本法最低檢測質量為0.5ng。取0.5mL水樣測定,檢測下限為1.0μg/L。儀器和裝置原子熒光光度計。試劑硝酸。鹽酸。鐵氰化鉀溶液(200g/L)。硼氫化鈉-鐵氰化鉀溶液 稱取0.5g氫