大連化物所提出光催化烯烴的鹵代/吡啶雙官能化新策略
近日,中國科學院大連化學物理研究所仿生催化合成創新特區研究組研究員陳慶安團隊在光催化烯烴的鹵代/吡啶雙官能化方面取得新進展,發展出通過調控氧化淬滅活化模式和自由基極性交叉途徑,實現光催化非活化烯烴的鹵代/吡啶雙官能化反應新策略。該策略作為對傳統Heck型反應的補充,通過自由基反應過程避免了中間體β-H消除帶來的底物限制,高效地將鹵代基和吡啶基團區域選擇性地加成到烯烴雙鍵。 由簡單底物快速構建復雜分子是有機化學的重要研究方向。其中,烯烴的催化官能化反應由于底物成本低且來源廣泛而備受關注。雖然經典的Heck反應和還原型Heck反應提供了烯烴的芳基化和氫芳基化的有效途徑,但這些方法均涉及了鹵原子的消除,產生了不可避免的廢棄物。此外,碳鹵鍵的選擇性構建十分重要,它是多種官能團轉化的重要反應位點。因此,在不犧牲鹵原子的情況下,實現烯烴雙鍵同時構建新的C-C和C-X鍵具有重要意義。 陳慶安團隊長期致力于發展不同催化體系,以實現烯烴選......閱讀全文
大連化物所:光催化烯烴的鹵代/吡啶雙官能化新策略
近日,中國科學院大連化學物理研究所仿生催化合成創新特區研究組研究員陳慶安團隊在光催化烯烴的鹵代/吡啶雙官能化方面取得新進展,發展出通過調控氧化淬滅活化模式和自由基極性交叉途徑,實現光催化非活化烯烴的鹵代/吡啶雙官能化反應新策略。該策略作為對傳統Heck型反應的補充,通過自由基反應過程避免了中間體
大連化物所提出光催化烯烴的鹵代/吡啶雙官能化新策略
近日,中國科學院大連化學物理研究所仿生催化合成創新特區研究組研究員陳慶安團隊在光催化烯烴的鹵代/吡啶雙官能化方面取得新進展,發展出通過調控氧化淬滅活化模式和自由基極性交叉途徑,實現光催化非活化烯烴的鹵代/吡啶雙官能化反應新策略。該策略作為對傳統Heck型反應的補充,通過自由基反應過程避免了中間體
簡述烯烴的加次鹵酸反應
烯烴與鹵素的水溶液反應生成β-鹵代醇: CH2=CH2+HOX→CH2X-CH2OH 鹵素、質子酸,次鹵酸等都是親電試劑,烯烴的加成反應是親電加成反應。反應能進行,是因為烯烴大π鍵的電子易流動,在環境(試劑)的影響下偏到雙鍵的一個碳一邊。如果是丙烯這樣不對稱烯烴,由于烷基的供電性,使π鍵電子
甲醇制烯烴第一個碳碳鍵生成機制研究中獲進展
近日,中國科學院武漢物理與數學研究所研究員鄧風和徐君團隊在甲醇制烯烴反應機理研究中取得新進展,發現沸石分子篩的非骨架鋁物種在第一個碳-碳(C-C)鍵生成過程中起到了關鍵作用,并揭示了相關的催化反應機理。研究結果在線發表在《德國應用化學》(Angew. Chem. Int. Ed.)雜志上。 乙
甲醇制烯烴第一個碳碳鍵生成的功臣沸石分子篩
近日,中國科學院武漢物理與數學研究所研究員鄧風和徐君團隊在甲醇制烯烴反應機理研究中取得新進展,發現沸石分子篩的非骨架鋁物種在第一個碳-碳(C-C)鍵生成過程中起到了關鍵作用,并揭示了相關的催化反應機理。研究結果在線發表在《德國應用化學》(Angew. Chem. Int. Ed.)雜志上。 乙
上海藥物所發現核酸與含鹵配體之間的鹵鍵作用
鹵鍵是一種被廣泛應用于藥物設計和材料科學等多個領域的非共價相互作用。含鹵配體中的鹵原子由于其電荷分布的各向異性,其頂端往往會形成一個帶正電荷的親電性區域(σ-hole),這一區域可與親核基團相互吸引。含鹵配體與蛋白質靶標之間的鹵鍵作用已得到廣泛研究。核酸(DNA、RNA)是重要的藥物靶標。由于核
關于烯烴的基本信息介紹
烯烴是指含有C=C鍵(碳碳雙鍵)的碳氫化合物。屬于不飽和烴,分為鏈烯烴與環烯烴。按含雙鍵的多少分別稱單烯烴、二烯烴等。雙鍵中有一根屬于能量較高的π鍵,不穩定,易斷裂,所以會發生加成反應。 鏈狀單烯烴分子通式為CnH2n,常溫下C2-C4為氣體,是非極性分子,不溶或微溶于水。雙鍵基團是烯烴分子中
什么是烯烴?
烯烴是指含有C=C鍵(碳碳雙鍵)的碳氫化合物。屬于不飽和烴,分為鏈烯烴與環烯烴。按含雙鍵的多少分別稱單烯烴、二烯烴等。雙鍵中有一根屬于能量較高的π鍵,不穩定,易斷裂,所以會發生加成反應。鏈狀單烯烴分子通式為CnH2n,常溫下C2-C4為氣體,是非極性分子,不溶或微溶于水。雙鍵基團是烯烴分子中的官能團
單分子消除反應的基本性質
由于中間體碳正離子會發生重排,故E1反應會得到重排產物。E1反應的區域選擇性與E2反應相同,反應物有兩種不同的β-氫時,反應遵循查依采夫規則,主要生成穩定的烯烴。產物烯烴有順反異構時,以E型烯烴為主。單分子消除反應與雙分子消除反應和單分子親核取代反應為競爭反應。當鹵代烴在堿作用下消除時,由于C-X鍵
單分子消除反應的基本性質介紹
由于中間體碳正離子會發生重排,故E1反應會得到重排產物。E1反應的區域選擇性與E2反應相同,反應物有兩種不同的β-氫時,反應遵循查依采夫規則,主要生成穩定的烯烴。產物烯烴有順反異構時,以E型烯烴為主。 單分子消除反應與雙分子消除反應和單分子親核取代反應為競爭反應。當鹵代烴在堿作用下消除時,由于
鹵代烴的化學性質
鹵代烴是一類重要的有機合成中間體,是許多有機合成的原料,它能發生許多化學反應,如取代反應、消去反應等。鹵代烷中的鹵素容易被—OH、—OR、—CN、NH3或H2NR取代,生成相應的醇、醚、腈、胺等化合物。一般反應式可寫為:R─X+:Nu?-Nu+:X碘代烷最容易發生取代反應,溴代烷次之,氯代烷又次之,
鹵代烴的化學性質
鹵代烴是一類重要的有機合成中間體,是許多有機合成的原料,它能發生許多化學反應,如取代反應、消去反應等。鹵代烷中的鹵素容易被—OH、—OR、—CN、NH3或H2NR取代,生成相應的醇、醚、腈、胺等化合物。一般反應式可寫為:R─X+:Nu?-Nu+:X碘代烷最容易發生取代反應,溴代烷次之,氯代烷又次之,
關于鹵代烴的化學性質介紹
鹵代烴是一類重要的有機合成中間體,是許多有機合成的原料,它能發生許多化學反應,如取代反應、消去反應等。鹵代烷中的鹵素容易被—OH、—OR、—CN、NH3或H2NR取代,生成相應的醇、醚、腈、胺等化合物。 一般反應式可寫為:R─X+:Nu?-Nu+:X 碘代烷最容易發生取代反應,溴代烷次之,氯
烯烴的化學性質與反應
烯烴的化學性質比較穩定,但比烷烴活潑。考慮到烯烴中的碳碳雙鍵比烷烴中的碳碳單鍵強,所以大部分烯烴的反應都有雙鍵的斷開并形成兩個新的單鍵。催化加氫反應烯烴與氫作用生成烷烴的反應稱為加氫反應,又稱氫化反應。加氫反應的活化能很大,即使在加熱條件下也難發生,而在催化劑的作用下反應能順利進行,故稱催化加氫。在
化學所烯烴催化不對稱鹵環化研究取得新進展
烯烴的鹵化反應是合成化學中最重要的基元反應之一,為烯烴的功能化提供了非常簡便有效的途徑。烯烴的不對稱鹵化反應則可在雙鍵上同時引入兩個手性中心,產物中的鹵原子可以進一步發生多種轉化,如立體選擇性的取代反應等,方便快捷的構建豐富的合成中間體。然而,由于烯烴的不對稱鹵化反應極具難度,目前報道的催化體系
加成反應的基本分類
親核反應親核加成反應是由親核試劑與底物發生的加成反應。反應發生在碳氧雙鍵、碳氮三鍵、碳碳三鍵等等不飽和的化學鍵上。最有代表性的反應是醛或酮的羰基與格氏試劑加成的反應。RC=O + R'MgCl → RR'C-OMgCl再水解得醇,這是合成醇的良好辦法。在羰基中,O稍顯電負性;在格氏試
如何判斷有機物極性的大小
判斷有機物極性的大小如下:極性仍是取決于各自的對稱程度是否將鍵的極性完全抵消。當某分子并不因其中C—Cσ鍵的旋轉而引起碳干排布不同的構象時,構型則絕對對稱,分子無極性。將其分子中H原子全部用CH3所替代,分子的偶極矩仍為零。作為以烷烴為主要成分的汽油、石蠟,其中可能含有非極性的分子構象,但從整體來說
如何判斷有機物極性的大小
判斷有機物極性的大小如下:極性仍是取決于各自的對稱程度是否將鍵的極性完全抵消。當某分子并不因其中C—Cσ鍵的旋轉而引起碳干排布不同的構象時,構型則絕對對稱,分子無極性。將其分子中H原子全部用CH3所替代,分子的偶極矩仍為零。作為以烷烴為主要成分的汽油、石蠟,其中可能含有非極性的分子構象,但從整體來說
人工進化酶首次打破硅碳鍵
硅和碳都是地球上含量豐富的元素,但是自然界卻從未發現硅碳鍵的存在。2016年,美國加州理工學院科學家首次找到誘使生物通過化學方式形成硅碳鍵的方法。現在,他們首次設計出一種酶,可打破硅和碳之間牢固的人造鍵。這種鍵存在于廣泛使用的硅氧烷或有機硅化學品中,而這些化學物質可能殘留在環境中。這一成果有望使
人工進化酶首次打破硅碳鍵
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516722.shtm
大連化物所發現光催化低溫CH鍵活化反應
近日,中國科學院大連化學物理研究所分子反應動力學國家重點實驗室副研究員馬志博、中科院院士楊學明團隊,與華中科技大學教授潘明虎團隊合作,發現了氧化鈦表面低溫光催化C-H鍵斷鍵反應,并在單分子層面上對反應機理進行解釋。 C-H鍵是有機化學中重要的一類化學鍵,與其斷鍵及進一步合成相關的化學反應常常需
廉價過渡金屬催化領域的研究進展
近日,南方科技大學理學院化學系副教授舒偉課題組圍繞廉價金屬催化的選擇性合成等綠色精準催化主題進行了系統研究,取得了一系列進展,相關成果發表在Angewandte Chemie、Nature Communications以及ACS Catalysis等化學領域高水平期刊。 α-手性酰胺片段廣泛存
有機化合分類
有機物種類繁多,可分為烴和烴的衍生物兩大類。根據有機物分子的碳架結構,還可分成開鏈化合物、碳環化合物和雜環化合物三類。根據有機物分子中所含官能團的不同,又分為烷、烯、炔、芳香烴和鹵代烴、醇、酚、醚、醛、酮、羧酸、酯等等。按碳的骨架1.鏈狀化合物這類化合物分子中的碳原子相互連接成鏈狀,因其最初是在脂肪
大化所二氧化碳加氫制低碳烯烴取得新進展
我所李燦院士,李澤龍博士等人在CO2催化加氫制備低碳烯烴方面取得新進展:實現了串聯式催化劑體系上直接將CO2高選擇性的轉化為低碳烯烴。近日,該研究成果在ACS Catalysis (ACS Catal. 2017, 7, 8544-8548)上發表。 李燦團隊長期致力于太陽能光催化、光電催化、
雙分子消除反應的反應機理
以鹵代烷烴為例鹵代烷在發生E2反應時,堿首先進攻β-氫,并逐漸與之結合,β-碳原子與氫原子之間的共價鍵部分斷裂;與此同時,中心碳原子與鹵素之間的共價鍵也部分斷裂,鹵素X帶著一對電子逐漸離開中心碳原子。在此期間電子云也重新分配,α-碳原子與β-碳原子間的π鍵已部分形成,經過如下所示過渡態后,反應繼續進
有機化合物的分類方法及種類
有機物種類繁多,可分為烴和烴的衍生物兩大類。根據有機物分子的碳架結構,還可分成開鏈化合物、碳環化合物和雜環化合物三類。根據有機物分子中所含官能團的不同,又分為烷、烯、炔、芳香烴和鹵代烴、醇、酚、醚、醛、酮、羧酸、酯等等。按碳的骨架1、鏈狀化合物這類化合物分子中的碳原子相互連接成鏈狀,因其最初是在脂肪
化合物的分類方法
有機物種類繁多,可分為烴和烴的衍生物兩大類。根據有機物分子的碳架結構,還可分成開鏈化合物、碳環化合物和雜環化合物三類。根據有機物分子中所含官能團的不同,又分為烷、烯、炔、芳香烴和鹵代烴、醇、酚、醚、醛、酮、羧酸、酯等等。按碳的骨架1、鏈狀化合物這類化合物分子中的碳原子相互連接成鏈狀,因其最初是在脂肪
表面化學方法實現碳碳雙鍵和三鍵碳納米結構直接制備
相比于傳統溶液化學,表面化學在原子級精準制備碳納米結構方面展現出許多優勢,其中最為廣泛應用的是通過脫鹵偶聯反應實現新穎碳納米結構的可控制備。然而截至到目前,表面化學反應用到的鹵化物前驅體分子大多還局限在同一個碳原子上只修飾一個鹵素原子的范疇。近期,許維教授課題組創新性地提出并設計了一系列前驅體分子,
氣液分配色譜儀的合成固定相
氣液分配色譜儀的合成固定相有化學鍵合固定相和高分子多孔微球等。一、化學鍵合固定相:化學鍵合固定相又稱化學健合多孔微球固定相,是一種以表面孔徑度可人為控制的球形多孔硅膠為基質,利用化學反應把固定液鍵合在載體表面上制成的固定相。1、類型:(1)硅氧碳鍵型鍵合固定相:≡Si-O-C(2)硅氧硅碳鍵型鍵合固
概述雙分子消除反應的反應機理
一、以鹵代烷烴為例 鹵代烷在發生E2反應時,堿首先進攻β-氫,并逐漸與之結合,β-碳原子與氫原子之間的共價鍵部分斷裂;與此同時,中心碳原子與鹵素之間的共價鍵也部分斷裂,鹵素X帶著一對電子逐漸離開中心碳原子。在此期間電子云也重新分配,α-碳原子與β-碳原子間的π鍵已部分形成,經過如下所示過渡態后