• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>

  • X射線熒光光譜儀的分類有幾種

    X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。X射線熒光光譜是一種常用的光譜技術,既可用于材料的組成成分分析,又可用于涂層和多層薄膜厚度的測量等。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水平,分析時間短。 熒光光譜 能量色散X射線熒光光譜采用脈沖高度分析器將不同能量的脈沖分開并測量。能量色散X射線熒光光譜儀可分為具有高分辨率的光譜儀,分辨率較低的便攜式光譜儀,和介于兩者之間的臺式光譜儀。高分辨率光譜儀通常采用液氮冷卻的半導體探測器,如Si(Li)和高純鍺探測器等。低分辨便攜式光譜儀常常采用正比計數器或閃爍計數器為探測器,它們不需要液氮冷卻。采用電致冷的半導體探測器,高分辨率譜儀已不用液氮冷卻。同步輻射光激發X射線熒光光譜、質子激發X射線熒光光譜、放射性同位素激發X射線熒光光譜、全反射X射線熒光光譜、微區X射線熒光光譜等較......閱讀全文

    X射線熒光光譜儀概述

      X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水

    X射線熒光光譜儀優點

    X射線熒光光譜儀優點:1)可在一臺儀器上可實現掃描式X射線波長色散分析、X射線能量色散分析、X-射線聚焦微小區域分析、游離氧化鈣X射線衍射分析。2)波長色散通道(波譜核)和能量色散通道(能譜核)可同時分別得到Be-?Am?和Na-Am?所有元素的光譜數據和定量分析結果。3)軟件可以得到上述各種分析技

    X射線熒光光譜儀原理

    X射線熒光光譜儀原理?????? X射線熒光光譜儀主要由激發源(X射線管)和探測系統構成。其原理就是:X射線管通過產生入射X射線(一次X射線),來激發被測樣品。 受激發的樣品中的每一種元素會放射出二次X射線(又叫X熒光),并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這

    X射線熒光光譜儀(XRF)

      自1895年倫琴發現X射線以來,X射線及相關技術的研究和應用取得了豐碩成果。其中,1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎;20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段;60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅

    X射線熒光光譜儀結構

    該系統由X射線發生器、光譜儀主體部分、電氣部分及系統控制器、計算機部分組成。3.1?X射線發生器 X射線發生器由高壓變壓器及管流管壓控制單元、X射線管、熱交換器。?3.1.1高壓變壓器及管流管壓控制單元 產生高穩定的高壓加到X射線管上用以產生X射線。這里利用高電壓加速的高速電子轟擊X射線管金屬靶面產

    X射線熒光光譜儀的概述

      自1895年倫琴發現X射線以來,X射線及相關技術的研究和應用取得了豐碩成果。其中,1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎;20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段;60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅

    X射線熒光光譜儀的簡介

      X射線熒光光譜儀(X-ray Fluorescence Spectrometer,簡稱:XRF光譜儀),是一種快速的、非破壞式的物質測量方法。X射線熒光(X-ray fluorescence,XRF)是用高能量X射線或伽瑪射線轟擊材料時激發出的次級X射線。這種現象被廣泛用于元素分析和化學分析,特

    X射線熒光光譜儀的原理

    X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量

    X射線熒光光譜儀的原理

    X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量

    X射線熒光光譜儀的原理

    X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量

    X射線熒光光譜儀的原理

    X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量

    X射線熒光光譜儀的原理

    X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量

    X射線熒光光譜儀的原理

    X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量

    X射線熒光光譜儀的原理

    X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量

    X射線熒光光譜儀的原理

      X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水

    X射線熒光光譜儀的原理

    X熒光光譜儀(XRF)由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后,儀器軟件將探測系統所收集

    X射線熒光光譜儀的全反射熒光

      如果n1>n2,則介質1相對于介質2為光密介質,介質2相對于介質1為光疏介質。對于X射線,一般固體與空氣相比都是光疏介質。所以,如果介質1是空氣,那么α1>α2,即折射線會偏向界面。如果α1足夠小,并使α2=0,此時的掠射角α1稱為臨界角α臨界。當α1

    X射線熒光光譜儀的理論基礎X射線的起源

      1895年德國物理學家威廉·康拉德·倫琴研究陰極射線管時,發現陰極能放出一種有穿透力的、肉眼看不見的射線。由于它的本質在當時是一個“未知數”,故稱之為X射線。  倫琴無條件地把X射線的發現奉獻給人類,沒有申請專利。  X射線和可見光一樣屬于電磁輻射,但其波長比可見光短得多,在10-6~10nm。

    X射線熒光光譜儀的理論基礎X射線的本質

      X射線的本質是電磁輻射,具有波粒二像性。  1)波動性  X射線的波長范圍:0.01~100  用于元素分析的X射線光譜所使用的波長范圍在0.01~11nm  2)粒子性  特征表現為以光子形式輻射和吸收時具有的一定的質量、能量和動量。  表現形式為在與物質相互作用時交換能量。如光電效應、熒光輻

    X射線熒光光譜儀的理論基礎X射線的產生

      高速運動的電子與物體碰撞時,發生能量轉換,電子的運動受阻失去動能,其中一小部分(1%左右)能量轉變為X射線,而絕大部分(99%左右)能量轉變成熱能使物體溫度升高。  產生X射線源有同位素放射源、X射線管、激光等離子體、同步輻射和X射線激光等。

    X射線熒光光譜儀X射線防護系統故障分析

      為了防止X射線泄漏,高壓發生器只有在射線防護系統正常的情況下才能啟動。射線防護系統正常與否,主要檢查以下二部分: 1、面板的位置是否正常。X射線熒光光譜儀是一個封閉系統,面板是最外層的射線防護裝置,如果有一塊面板不到位,儀器就有射線泄漏的可能。因此,每塊面板上都有位置接觸傳感器,面板沒有完全合上

    X射線熒光光譜儀分類中波長和能量有什么區別

    X-射線熒光光譜儀(XRF)是一種較新型可以對多元素進行快速同時測定的儀器。在X射線激發下,被測元素原子的內層電子發生能級躍遷而發出次級X射線(即X-熒光)。波長和能量是從不同的角度來觀察描述X射線所采用的兩個物理量。??波長色散型X射線熒光光譜儀(WD-XRF),是用晶體分光而后由探測器接收經過衍

    X射線熒光光譜儀中X射線的由來和性質分析

    X射線熒光光譜儀(XRF)由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后,儀器軟件將探測系統所

    X射線熒光分析儀的主要分類

    根據分光方式的不同,X射線熒光分析可分為能量色散和波長色散兩類,也X射線熒光分析就是通常所說的能譜儀和波譜儀,縮寫為EDXRF和WDXRF。通過測定熒光X射線的能量實現對被測樣品的分析的方式稱之為能量色散X射線熒光分析,相應的儀器稱之為能譜儀,通過測定熒光X射線的波長實現對被測樣品分析的方式稱之為波

    X射線熒光光譜儀相關特點

    ?X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水平

    X射線熒光光譜儀指標信息

    ?X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析F(9)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水平

    x射線熒光光譜儀安全事項

      在分析過程中,給管通電后,分析儀會發射定向輻射束。應盡合理的努力使放射線的暴露量保持在實際可行的劑量限度以下。這就是所謂的ALARA(最低合理可行)原則。三個因素將有助于最大程度地減少您的輻射暴露:時間,距離和屏蔽。  盡管便攜式x射線熒光光譜儀或手持式x射線熒光光譜儀元素分析儀發出的輻射與普通

    X射線熒光光譜儀-檢測標準

    JJG810-1993《波長色散X射線熒光光譜儀》檢定周期為1年。

    X射線熒光光譜儀工作原理

    2.1?X射線熒光的物理原理 X射線是電磁波譜中的某特定波長范圍內的電磁波,其特性通常用能量(單位:千電子伏特,keV)和波長(單位nm)描述。 X射線熒光是原子內產生變化所致的現象。一個穩定的原子結構由原子核及核外電子組成。其核外電子都以各自特有的能量在各自的固定軌道上運行,內層電子(如K層)在足

    什么是X射線熒光光譜儀

    X射線是一種電磁輻射,其波長介于紫外線和γ射線之間。它的波長沒有一個嚴格的界限,一般來說是指波長為0.001-50nm的電磁輻射。對分析化學家來說,感興趣的波段是0.01-24nm,0.01nm左右是超鈾元素的K系譜線,24nm則是輕元素Li的K系譜線。1923年赫維西(Hevesy,G.Von)提

    人体艺术视频