新型干涉光譜成像技術研究取得重要進展
中科院西安光學精密機械研究所新型干涉光譜成像技術研究日前取得重要進展。以胡炳樑研究員為首的研究團隊在國內率先將離軸三反光學系統應用于短波紅外干涉光譜成像系統中,并成功研制了基于M-Z像面干涉光譜成像的離軸三反桌面樣機系統。 面向寬覆蓋、高分辨率、高光譜分辨率的要求,離軸三反加M-Z像面干涉光譜成像技術可以有效解決大視場光學系統和大尺寸干涉儀的技術瓶頸。M-Z干涉儀放置在系統會聚光路中,在減小系統體積和重量的同時,能量利用率可以達到成像儀的極限;離軸三反光學系統則能夠同時實現長焦距與大視場,并且沒有中心遮攔,傳遞函數高。 但在基于M-Z像面干涉的光譜成像系統中,離軸全反射系統難以補償會聚光路中M-Z干涉儀棱鏡元件所引入的像差。為此,科研人員將校正補償系統應用到離軸三反系統中,設計并成功研制了一種新型離軸三反成像光學系統,并針對離軸三反系統裝調自由度多,結構非對稱性以及離軸系統離軸量需要精確測量調整等問......閱讀全文
FTIR干涉儀除濕技術
由于KBr其良好的紅外光透過特性,FTIR干涉儀采用KBr作為分束器材料。但是其最大的缺點就是怕潮,很容易潮解。因此干涉儀的防潮是非常重要的一項措施。島津公司在FTIR干涉儀防潮設計上是領先的。其在1984年就設計了世界上第一款密封干涉儀的FTIR-4000,在2002年和2008年又分別推出了配備
地基超光譜紅外干涉儀簡介
傅里葉變換紅外遙感光譜輻射計 ASSIST II (別稱:地基超光譜紅外干涉儀)將中紅外光譜儀系統集成到一起,可以自主分析溫度/濕度和地面發射的測算。系統配置緊湊,方便安裝,并提供其他的通信網關接口。該儀器可以有效的獲取典型地物的比輻射率波譜,將提高地表溫度與比輻射率的遙感真實性檢驗的可信度和精
激光干涉儀的技術特點
1. 同時測量線性定位誤差、直線度誤差(雙軸)、偏擺角、俯仰角和滾動角2. 設計用于安裝在機床主軸上的5D/6D傳感器3. 可選的無線遙控傳感器最長的控制距離可到25米4. 可測量速度、加速度、振動等參數,并評估機床動態特性5. 全套系統重量僅15公斤,設計緊湊、體積小,測量機床時不需三角架6. 集
新型非線性干涉儀將在量子光譜學、成像等領域發光發熱
研究者首次在五晶體的級聯中證明了基于晶體超晶格的非線性光學干涉儀。量子干涉引發的靈敏度增強使其成為傳感、成像和光譜學的有前途的工具。 在幾百萬分子和原子中探測到低至幾十個的低濃度粒子是一項令人著迷的研究目標。基于紅外的光學傳感器能檢測到分子內部運動的微小變化,這些變化構成了傳感和識別化學成分的
干涉儀應用
干涉儀的應用極為廣泛,主要有如下幾方面: 長度測量 在雙光束干涉儀中,若介質折射率均勻且保持恒定,則干涉條紋的移動是由兩相干光幾何路程之差發生變化所造成,根據條紋的移動數可進行長度的精確比較或絕對測量。邁克耳孫干涉儀和法布里-珀羅干涉儀曾被用來以鎘紅譜線的波長表示國際米。 折射率測定 兩
新型干涉光譜成像技術研究取得重要進展
中科院西安光學精密機械研究所新型干涉光譜成像技術研究日前取得重要進展。以胡炳樑研究員為首的研究團隊在國內率先將離軸三反光學系統應用于短波紅外干涉光譜成像系統中,并成功研制了基于M-Z像面干涉光譜成像的離軸三反桌面樣機系統。 面向寬覆蓋、高分辨率、高光譜分辨率的要求,離軸三反加
激光干涉儀的主要技術特點
1. 同時測量線性定位誤差、直線度誤差(雙軸)、偏擺角、俯仰角和滾動角2. 設計用于安裝在機床主軸上的5D/6D傳感器3. 可選的無線遙控傳感器最長的控制距離可到25米4. 可測量速度、加速度、振動等參數,并評估機床動態特性5. 全套系統重量僅15公斤,設計緊湊、體積小,測量機床時不需三角架6. 集
激光干涉儀的技術參數
1. 線性:0.5ppm .2. 測量范圍:40米(1D可選80米)3. 線性分辨力:0.001um.4. 偏擺角和俯仰角的精度:(1.0+0.1/m)角秒或1%顯示較大值5. 最大范圍:800角秒6. 滾動角精度:1.0角秒7. 直線度精度:(1.0+0.2/m)um或1%顯示較大值8. 直線度最
地基超光譜紅外干涉儀的用途介紹
傅立葉紅外高光譜輻射儀是大氣探測裝備測試評估與應用平臺中的重要設備,將用于支撐光電性能測試系統中對紅外光譜探測設備進行量值傳遞和標定,用于真實性檢驗分析評估系統中獲取高時間分辨率邊界層大氣廓線、大氣成分信息,研究衛星輻射數據校正方法。 (1)利用高光譜/超光譜信息進行大氣測量是大氣探測技術發展
干涉成像光譜儀的應用
最初成像光譜儀的發展,主要是用于植被遙感和地質礦物識別研究之用(Goetz等,1985)。但是隨著成像光譜技術的深入研究,它己被廣泛應用在大氣科學、生態、地質、水文和海洋等學科中(Vanes&Goetz,1993)。 它在軍事和民用領域,都有廣泛的應用前景。在軍事上,與可見光照相偵察技術相比,
干涉成像光譜儀的簡介
1880年,邁克耳遜(iMhcelson)發明了以他的名字命名的干涉儀。后來瑞利首先認識到干涉儀所產生的干涉圖(干涉條紋),可以通過傅里葉變換而得出其光譜,即干涉圖與光譜之間存在著一種對應的傅里葉變換的數學運算關系,從而通過傅里葉積分變換的數學運算把干涉圖(干涉條紋)與輻射光譜直接聯系了起來,這
干涉成像光譜儀的概述
干涉成像光譜儀是利用干涉原理獲得一系列隨光程差變化的干涉圖樣,通過反演可以得到目標物體的二維空間圖像和一維光譜信息的儀器。干涉成像光譜儀有時間調制型和空間調制型兩種。 由于物質的光譜與它的屬性密切相關,太陽光照射到月表后被漫反射,不同的物質將呈現不同的反射光譜,成像光譜儀就利用了這個原理,通過
干涉成像光譜儀的分類
成像光譜技術從原理上講分為色散型和干涉型兩大類:色散型成像光譜儀是利用色散元件(光柵或棱鏡等)將復色光色散分成序列譜線,然后再用探測器測量每一譜線元的強度。而干涉型成像光譜儀是同時測量所有譜線元的干涉強度,對干涉圖進行逆傅里葉變換將得到目標的光譜圖。 因色散型成像光譜儀中均含有人射狹縫,狹縫越
干涉儀的簡介
干涉儀是很廣泛的一類實驗技術的總稱, 其思想在于利用波的疊加性來獲取波的相位信息, 從而獲得實驗所關心的物理量。干涉儀并不僅僅局限于光干涉儀。 干涉儀在天文學 (Thompson et al, 2001), 光學, 工程測量, 海洋學, 地震學, 波譜分析, 量子物理實驗, 遙感, 雷達等等精密
外差干涉儀簡介
又稱雙頻干涉儀或交流干涉儀。是使用兩種不同頻率的單色光作為測量光束和參考光束。通過光電探測器的混頻,輸出差頻信號(受光電探測器頻響的限制,頻差一般在 100兆赫以內)。被測物體的變化如位移、振動、轉動、大氣擾動等引起的光波相位變化或多普勒頻移載于此差頻上,經解調即可獲得被測數據的儀器。
什么是干涉儀
利用干涉原理測量光程之差從而測定有關物理量的光學儀器。兩束相干光間光程差的任何變化會非常靈敏地導致干涉條紋的移動,而某一束相干光的光程變化是由它所通過的幾何路程或介質折射率的變化引起,所以通過干涉條紋的移動變化可測量幾何長度或折射率的微小改變量,從而測得與此有關的其他物理量。測量精度決定于測量光程
什么是干涉儀
利用干涉原理測量光程之差從而測定有關物理量的光學儀器。兩束相干光間光程差的任何變化會非常靈敏地導致干涉條紋的移動,而某一束相干光的光程變化是由它所通過的幾何路程或介質折射率的變化引起,所以通過干涉條紋的移動變化可測量幾何長度或折射率的微小改變量,從而測得與此有關的其他物理量。測量精度決定于測量光程
白光干涉儀簡介
干涉儀是一種對光在兩個不同表面反射后形成的干涉條紋進行分析的儀器。其基本原理就是通過不同光學元件形成參考光路和檢測光路。 干涉儀是利用干涉原理測量光程之差從而測定有關物理量的光學儀器。兩束相干光間光程差的任何變化會非常靈敏地導致干涉條紋的移動,而某一束相干光的光程變化是由它所通過的幾何路程或介
干涉儀的分類
干涉儀的分類有不同分法按照結構區分干涉儀可以分為單路徑干涉儀和多路徑干涉儀兩類, 其差異在于干涉的波是否通過同一路徑傳播。 例如邁克爾遜干涉儀就是常見的多路徑干涉儀, 而Sagnac干涉儀, 等傾干涉和等厚干涉等即為單路徑干涉儀。按照干涉光來源區分干涉儀可以分成波前分解和幅度分解兩類, 其差異在于是
瑞利干涉儀簡介
一種分波面雙光束干涉儀。1896年,瑞利研究制成,是楊氏雙縫干涉實驗裝置的改型,用于測定流體的折射率。單色縫光源S位于透鏡L1的前焦面,出射的平行光射到與S平行的狹縫S1和S2上,從雙縫出來的光分別通過長度為l的玻璃管T1和T2,接著分別通過補償板C1和C2,在透鏡L2的后焦面上相遇,產生干涉條
干涉儀的分類
干涉儀的分類有不同分法按照結構區分干涉儀可以分為單路徑干涉儀和多路徑干涉儀兩類, 其差異在于干涉的波是否通過同一路徑傳播。 例如邁克爾遜干涉儀就是常見的多路徑干涉儀, 而Sagnac干涉儀, 等傾干涉和等厚干涉等即為單路徑干涉儀。按照干涉光來源區分干涉儀可以分成波前分解和幅度分解兩類, 其差異在于是
斐索干涉儀和邁克爾遜干涉儀的區別
斐索干涉儀和邁克爾遜干涉儀最大的區別就是:在干涉儀中,參考光和傳感光是沿著同一條光路行進的,因此稱為共光路干涉儀。如果使用分光路的干涉儀,在兩束光經過的光程較長時或者進行大口徑元件的檢’狽4時,兩支光路上往往會受到不同的外界干擾(如機械振動、溫度起伏等),致使干涉條紋不穩定,甚至嚴重影響測量。而
馬赫曾德干涉儀干涉原理簡介
馬赫—曾德干涉儀由于不帶有纖端反射鏡,需要增加一個3dB分路器,如下圖。光源發出的相干光經3dB分路器分為光強1:1的兩束光分別進入信號臂光纖和參考臂光纖,兩束光經第二個3dB分路器匯合相干形成干涉條紋。M—Z干涉儀的優點是不帶纖端反射鏡,克服了邁克耳遜干涉儀回波干擾的缺點,因而在光纖傳感技術領
干涉成像光譜儀的發展歷程
干涉成像光譜技術的出現源于干涉光譜學的發展。1880年,邁克耳遜(iMhcelson)發明了以他的名字命名的干涉儀。后來瑞利首先認識到干涉儀所產生的干涉圖(干涉條紋),可以通過傅里葉變換而得出其光譜,即干涉圖與光譜之間存在著一種對應的傅里葉變換的數學運算關系,從而通過傅里葉積分變換的數學運算把干
接觸式干涉儀相關
接觸干涉儀包括 1:支架及底座并附有五筋平臺,輔助平臺 2:干涉管并附有照明管,測桿提升器,隔熱瓶 3:拔棒,儀器防塵罩,調壓變壓器(220V/6V,5W),平面工作臺(可調式),瑪瑙工作臺,平行平晶,高量塊移動框,低量塊移動框,小球面測帽,平面測帽(Φ8),小平面測帽(Φ2),備用燈泡(
干涉儀的應用介紹
干涉儀的應用極為廣泛,主要有如下幾方面:?長度測量在雙光束干涉儀中,若介質折射率均勻且保持恒定,則干涉條紋的移動是由兩相干光幾何路程之差發生變化所造成,根據條紋的移動數可進行長度的精確比較或絕對測量。邁克耳孫干涉儀和法布里-珀羅干涉儀曾被用來以鎘紅譜線的波長表示國際米。?折射率測定兩光束的幾何路程保
干涉儀的應用方面
干涉儀的應用極為廣泛,主要有如下幾方面: 長度測量 在雙光束干涉儀中,若介質折射率均勻且保持恒定,則干涉條紋的移動是由兩相干光幾何路程之差發生變化所造成,根據條紋的移動數可進行長度的精確比較或絕對測量。邁克耳孫干涉儀和法布里-珀羅干涉儀曾被用來以鎘紅譜線的波長表示國際米。 折射率測定 兩
干涉儀的原理介紹
具有固定相位差的兩列準單色波的疊加將導致振幅發生變化, 從而可以通過測量較容易測量的振幅來獲取波的相位信息。兩列具有同頻率波之振動在一點處可以用如下公式描述那么這兩列波疊加以后的波的振動為三角運算給出其中疊加后的振幅為可以看到, 疊加后的振幅與兩列波的初始相位差有關。 由于幅度變化依賴于相位差的余弦
雙光束干涉儀簡介
雙光束干涉儀是利用分振幅法產生雙光束以實現干涉。通過調整該干涉儀,可以產生等厚干涉條紋,也可以產生等傾干涉條紋。主要用于長度和折射率的測量,若觀察到干涉條紋移動一條,便是M2的動臂移動量為λ/2,等效于M1與M2之間的空氣膜厚度改變λ/2。在近代物理和近代計量技術中,如在光譜線精細結構的研究和用
激光干涉儀怎樣調光
激光干涉儀,關鍵字是激光和干涉。干涉(interference)是兩列或兩列以上的波在空間中重疊時發生疊加從而形成新的波形的現象。對光源有一定的要求,而激光的三個特性能夠較好的發生干涉。所以就出現了用激光干涉實現某種應用的儀器。一般性應用都是測面型,距離,速度等。因為兩束滿足特定要求的激光能夠產生干