“量子雪崩”解釋非導體如何變成導體
美國布法羅大學研究人員用“量子雪崩”解釋了非導體如何變成導體,解開了絕緣體到金屬轉變之謎。相關研究發表在近期的《自然·通訊》雜志上。 絕緣體受到強烈的電場沖擊時可變成金屬,這為微電子學和超級計算機提供了誘人的可能性,但科學家尚不清楚這種電阻開關現象背后的物理原理。 研究人員表示,金屬和絕緣體之間的區別在于量子力學原理,該原理規定電子是量子粒子,它們的能級位于具有禁帶的能帶中。 自20世紀30年代以來,朗道—齊納公式一直用于解釋將絕緣體的電子從較低能帶推至較高能帶所需的電場大小。但此后幾十年的實驗表明,材料需要的電場比朗道—齊納公式估計的要小得多,僅為1/1000左右。 為了解決這個問題,研究人員決定考慮一個不同的問題:當絕緣體上能帶中的電子被推動時會發生什么?于是,他們對電阻開關進行了計算機模擬,這解釋了上能帶中電子的存在。它表明,一個相對較小的電場可引發上下能級之間的間隙坍塌,為電子在能級之間上上下下創造一條量子路......閱讀全文
“量子雪崩”解釋非導體如何變成導體
美國布法羅大學研究人員用“量子雪崩”解釋了非導體如何變成導體,解開了絕緣體到金屬轉變之謎。相關研究發表在近期的《自然·通訊》雜志上。 絕緣體受到強烈的電場沖擊時可變成金屬,這為微電子學和超級計算機提供了誘人的可能性,但科學家尚不清楚這種電阻開關現象背后的物理原理。 研究人員表示,金屬和絕緣體
“量子雪崩”解開絕緣體到金屬轉變之謎
布法羅大學物理學教授鐘漢(音譯)是一項新研究的主要作者,該研究有助于解決一個長期存在的物理謎團,即絕緣體如何通過電場轉變為金屬,這一過程稱為電阻開關。 美國布法羅大學研究人員用“量子雪崩”解釋了非導體如何變成導體,解開了絕緣體到金屬轉變之謎。相關研究發表在近期的《自然·通訊》雜志上。 絕緣體受到
“量子雪崩”解開絕緣體到金屬轉變之謎
美國布法羅大學研究人員用“量子雪崩”解釋了非導體如何變成導體,解開了絕緣體到金屬轉變之謎。相關研究發表在近期的《自然·通訊》雜志上。 絕緣體受到強烈的電場沖擊時可變成金屬,這為微電子學和超級計算機提供了誘人的可能性,但科學家尚不清楚這種電阻開關現象背后的物理原理。 研究人員表示,金屬和絕緣體
在絕緣體和超導體之間完美切換,紫銅可作量子設備理想“開關”
量子科學家發現了一種罕見的現象,這種現象可能是在量子設備中創造一個在絕緣體和超導體之間切換的“完美開關”的關鍵。這項由英國布里斯托爾大學領導并發表在新一期《科學》雜志上的研究發現,紫銅中存在這兩種相反的電子態。 在熱或光等小刺激的推動下,材料中的微小變化可能會引發從零電導率的絕緣狀態到無限電導
為什么掃描隧道顯微鏡不能用于非導體?
? ? ? ?掃描隧道顯微鏡(STM)的基本原理是利用量子理論中的隧道效應。將原子線度的極細探針和被研究物質的表面作為兩個電極,當樣品與針尖的距離非常接近時(通常小于1nm),在外加電場的作用下,電子會穿過兩個電極之間的勢壘流向另一電極。這種現象即是隧道效應。? ? ? ? 隧道電流強度對針尖與樣品
金屬魔法:用半導體量子點打造夢想材料
據最新一期《自然·通訊》雜志報道,包括日本RIKEN新興物質科學中心研究人員在內的團隊成功創造了一種由硫化鉛半導體膠體量子點組成的“超晶格”,研究人員在這種晶格中實現了類似金屬的導電性,導電性比目前的量子點顯示器高100萬倍,且不會影響量子限制效應。這一進步可能會徹底改變量子點技術,從而在電致發光設
奧地利科研人員發布“量子雪崩”研究進展
奧地利維也納技術大學科研團隊在《物理評論快報》(Physical Review Letters)發表最新研究成果《觸發超輻射和混合量子系統中的自旋反轉儲存》,為翻轉自旋系統的集體行為研究及其實驗控制提供了新見解。 基于維也納技術大學研發的芯片技術,科研團隊使用實驗平臺對金剛石氮-空位缺陷的自旋
拓撲絕緣體量子輸運性質研究取得進展
電子-電子相互作用、量子干涉和無序對輸運性質的影響是凝聚態物理研究的重要主題。量子干涉的一階效應包括被廣泛研究的弱局域化和反弱局域化效應,分別對應于正交對稱性和辛對稱性的體系。2004年研究人員發現,對于前者,比如無序足夠強的弱自旋軌道耦合半導體,電子-電子相互作用和量子干涉效應產生的二階量子修
拓撲絕緣體量子輸運性質研究取得進展
電子-電子相互作用、量子干涉和無序對輸運性質的影響是凝聚態物理研究的重要主題。量子干涉的一階效應包括被廣泛研究的弱局域化和反弱局域化效應,分別對應于正交對稱性和辛對稱性的體系。2004年研究人員發現,對于前者,比如無序足夠強的弱自旋軌道耦合半導體,電子-電子相互作用和量子干涉效應產生的二階量子修正可
拓撲絕緣體內奇異量子效應室溫下首現
科技日報北京10月27日電 (記者劉霞)據《自然·材料》雜志10月封面文章,美國科學家在研究一種鉍基拓撲材料時,首次在室溫下觀察到了拓撲絕緣體內的獨特量子效應,有望為下一代量子技術,如能效更高的自旋電子技術的發展奠定基礎,也將加速更高效且更“綠色”量子材料的研發。 拓撲絕緣體是一種特殊的材料,內
從絕緣體變導電體甚至超導體-液態氘高壓下被擠成“金屬”
美國桑迪亞國家實驗室和德國羅斯托大學的一個聯合研究團隊日前成功地在高壓下把液態氘(重氫)擠成類金屬,更接近生成固體金屬氫的最終目標。該研究成果刊登在最新一期的《科學》雜志上。 氘為氫的一種穩定形態同位素,元素符號一般為D或2H,其原子核由一質子和一中子組成,在大自然的含量約為一般氫的7000分
半導體所HgTe半導體量子點研究取得新進展
近年來,拓撲絕緣體材料以其獨特的物性吸引了科學界廣泛的研究關注。這類材料內部是絕緣體,而在邊界或/和表面則顯示出金屬的特性。這種獨特的性質無法按照傳統的材料分類方法來區分。其能帶結構由Z2拓撲不變量來刻畫。目前人們注意力集中在拓撲絕緣體塊材的制備和輸運性質研究方面。相對而言,拓撲絕緣體納米結構的
美國研制出奇特的拓撲超導體材料
3年前,美國普林斯頓大學的一個研究小組發現了三維拓撲絕緣體,這是一種金屬表面的奇怪絕緣體,雖然它獨特的屬性具有很大應用潛力,但用于量子計算機卻并非理想材料。兩年來,科學家經過不斷探索,完全扭轉其性質,使之成為表面是金屬、內部卻具有超導性的拓撲超導體。這種新材料的發現有望發展出新一代電子
半導體所等在拓撲激子絕緣體相研究中取得進展
上世紀60年代,諾貝爾獎獲得者Mott提出激子絕緣相,Mott提出考慮庫侖屏蔽效應,在半金屬體系中電子-空穴配對而形成激子,可能會導致體系失穩,從而在半金屬費米面處打開能隙,形成激子絕緣體狀態。但迄今為止,實驗上觀測激子絕緣體相是一個尚未完全解決的關鍵科學問題。激子絕緣體相存在及其玻色-愛因斯坦
半導體所等在拓撲絕緣體研究中獲進展
拓撲絕緣體是目前凝聚態物理的前沿熱點問題之一。它具有獨特的電子結構,它在體內能帶存在能隙,表現出絕緣體的行為;表面或邊界的能帶是線性的無能隙的Dirac錐能譜,因而是金屬態。這種量子物態展現出豐富而新奇的物性,如量子自旋霍爾效應、磁電耦合、量子反常霍爾效應等。由于這種新奇的物性源
半導體所在砷化鎵/鍺中拓撲相研究方面獲重要發現
中國科學院半導體研究所常凱研究組提出利用表面極化電荷在傳統常見半導體材料GaAs/Ge中實現拓撲絕緣體相。通過第一性原理計算和多帶k.p理論成功地證明了GaAs/Ge極化電荷誘導的拓撲絕緣體相,這為拓撲絕緣體的器件應用又向前推進了一步。 拓撲絕緣體是目前凝聚態物理的前沿熱點問題之一。它具有
原子力顯微鏡中的相圖和高度圖的區分
? ? ?原子力顯微鏡中的相圖和高度圖的區分? ? ?這時它將與其相互作用,范德瓦耳斯力或卡西米爾效應等來呈現樣品的表面特性,從而達到檢測的目的、顯示及處理系統組成,其目的是為了使非導體也可以采用類似掃描探針顯微鏡(SPM)的觀測方法。? ? ?它主要由帶針尖的微懸臂,從而以納米級分辨率獲得表面形貌
美國科學家創建出一種新的更穩定的大能隙拓撲絕緣體
美國猶他大學的研究人員創建出一種新的,其可作為硅半導體頂部金屬層的特殊材料,將使超高速計算機在室溫下執行快速運算成為可能。該項研究成果刊登在近日美國《國家科學院學報》上。 這種新的拓撲絕緣體,其里面猶如絕緣體,而其外部可導電,為量子計算機和快速自旋電子元件鋪平了道路。 量子計算機是一種遵循量
彈道和雪崩成功“邂逅”
彈道是量子物理的概念,雪崩是半導體物理中的基本現象,兩者貌似無關。但南京大學電子科學與工程學院教授王肖沐/施毅課題組與該校物理學院教授繆峰課題組合作,讓二者“邂逅”,首次在二維材料垂直異質結中提出和實現了一種新型PN結擊穿機制——彈道雪崩。 基于傳統雪崩反向擊穿機制的光電探測器,是實現單光子探
美韓研制出超小型血液檢測儀
據韓國聯合通訊社報道,韓國浦項工科大學5月17日表示,該校機械工程系李相賢(音譯)博士和美國密歇根大學艾倫·亨特教授率領的聯合研究小組利用某些絕緣體在納米級時具有導電性的原理,成功開發出可測定紅血球大小等各類血液指標的超小型血液檢測儀。 該研究小組通過實驗證明,玻璃等非導體
科學家利用超導量子芯片模擬多種陳絕緣體
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508097.shtm量子霍爾效應是凝聚態物理學中的基本現象,人們發展了拓撲能帶理論來研究此類拓撲物態,發現量子霍爾系統的能帶結構是和系統的邊界態密切相關的,即存在體相與邊緣的對應,并利用陳數來區分不同的拓
磁性拓撲絕緣體中的量子化反常霍爾效應研究取得進展
圖1:量子霍爾效應(左)與量子化反常霍爾效應(右)的比較示意圖 最近,中國科學院物理研究所/北京凝聚態物理國家實驗室方忠、戴希研究組在無需外磁場的量子霍爾效應研究中取得重要進展。本工作發表在《科學》雜志上【R.Yu,et.al., Science, 3June2010
Nature子刊:自旋極化STM等對量子材料中自旋流的原位探測
近日,北京大學量子材料科學中心韓偉研究員、謝心澄院士和日本理化學研究所Sadamichi Maekawa教授受邀在國際著名刊物 Nature Materials (《自然-材料》)撰寫綜述文章,介紹“自旋流-新穎量子材料的靈敏探針”這一新興領域的前沿進展。 自旋電子學起源于巨磁阻效應的發現,在
美首次制造出不使用半導體的晶體管
據美國每日科學網站6月21日報道,美國科學家首次利用納米尺度的絕緣體氮化硼以及金量子點,實現量子隧穿效應,制造出了沒有半導體的晶體管。該成果有望開啟新的電子設備時代。 幾十年來,電子設備變得越來越小,科學家們現已能將數百萬個半導體集成在單個硅芯片上。該研究的領導者、密歇根理工大學的物理學家
超高壓下半導體材料可變身拓撲絕緣體
一個由中國吉林大學、美國華盛頓卡內基研究所等單位研究人員組成的國際小組合作,通過對一種半導體施加壓力,將其轉變成了“拓撲絕緣體”(TI)。這是首次用壓力逐漸“調節”一種材料,讓它變成了拓撲絕緣狀態,也為先進電子學應用領域尋找TI材料開辟了新途徑。相關論文在線發表于《物理評論快報》上。 拓撲
強磁場中心拓撲絕緣體量子線研究取得新進展
3月28日,國際期刊《自然》子刊《科學報告》(Scientific Reports)發表中科院強磁場科學中心田明亮研究小組的最新科研成果:單晶碲化鉍Bi2Te3納米線中的一維弱反局域化(One-dimensional weak antilocalization in single-cry
半導體導電性的敏感效應
? 半導體的能帶結構如圖4.2-23所示,下面是已被價電子占滿的允帶,中間為禁帶,上面是空帶。因此,在外電場作用下不能導電,但是這是絕對零度時的情況。當外界條件發生變化時,例如溫度升高和有光照射時,滿帶中有少量電子有可能被激發到上面的空帶中去,在外電場作用下,這些電子將參與導電。同時,滿帶中由于少了
自學習蒙特卡洛推動電聲子耦合狄拉克費米子研究獲進展
自學習蒙特卡洛方法——通過提取描述系統低能有效模型的自學習過程,設計出優化的更新方法,克服量子多體系統蒙特卡洛模擬中臨界慢化和接收概率低等瓶頸——自2016年提出以來,已經在凝聚態量子多體問題相變和臨界現象研究中取得很多成果,受到廣泛關注。該方法在量子多體問題大規模數值計算領域中的應用,正在逐步
王健教授及合作者的最新成果:量子金屬態的證實
量子材料與量子相變是本世紀凝聚態物理與材料領域的研究熱點。量子相變與傳統的熱力學相變不同,是在絕對零度下調節非熱力學參量而發生的相變,相變點附近量子漲落而非熱漲落起了重要作用。作為量子相變的經典范例,二維超導-絕緣體相變以及超導-金屬相變研究獲得了2015年美國凝聚態物理最高獎巴克利獎。在量子相
拓撲絕緣體常溫常壓下表面態行為研究取得進展
不同于傳統意義上的“金屬”或“絕緣體”,拓撲絕緣體代表一種全新的量子物態:它的體態是有能隙的半導體/絕緣體,表面則表現為沒有能隙的金屬態。這種完全由材料體態電子結構的拓撲性質所決定的表面態,由于受到對稱性的保護,基本不受雜質或無序的影響,因此非常穩定。拓撲絕緣體的研究對探索和發現新的量子現象,以