• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>

  • 超級細菌疫苗的優勢與特點

    超級細菌疫苗的優勢與特點主要為:(1)疫苗的使用不受臨床現有細菌耐藥機制的影響;(2)疫苗可以大大降低細菌的感染從而減少抗生素的使用。抗生素使用的減少將減低抗生素耐藥的選擇壓力,進而延緩細菌耐藥的出現和傳播,打破了“抗生素使用-耐藥-抗生素濫用-泛耐藥”的惡性循環。(3)疫苗具有非常強的特異性,僅僅針對特定的病原菌,不會對人體的正常菌群產生影響,克服了抗生素使用導致菌群失調的副作用。因此,超級細菌疫苗研發已被WHO、歐美國家政府及輝瑞、諾華、葛蘭素時可等醫藥巨頭公司所重視。......閱讀全文

    超級細菌疫苗的優勢與特點

    超級細菌疫苗的優勢與特點主要為:(1)疫苗的使用不受臨床現有細菌耐藥機制的影響;(2)疫苗可以大大降低細菌的感染從而減少抗生素的使用。抗生素使用的減少將減低抗生素耐藥的選擇壓力,進而延緩細菌耐藥的出現和傳播,打破了“抗生素使用-耐藥-抗生素濫用-泛耐藥”的惡性循環。(3)疫苗具有非常強的特異性,僅僅

    超級細菌疫苗的優勢與特點

    超級細菌疫苗的優勢與特點主要為:(1)疫苗的使用不受臨床現有細菌耐藥機制的影響;(2)疫苗可以大大降低細菌的感染從而減少抗生素的使用。抗生素使用的減少將減低抗生素耐藥的選擇壓力,進而延緩細菌耐藥的出現和傳播,打破了“抗生素使用-耐藥-抗生素濫用-泛耐藥”的惡性循環。(3)疫苗具有非常強的特異性,僅僅

    亞單位疫苗與多肽疫苗的作用特點和功能優勢

    DNA重組技術使得獲取大量純抗原分子成為可能。這與以病原體為原料制備的疫苗相比在技術上發生了革命性變化,使得質量更易控制,價格也更高。從效果來看,有些亞單位疫苗,如非細胞百日咳、HBsAg等,在低劑量就具有高免疫原性;而另外一些疫苗的免疫力則較低,要求比鋁鹽更強的佐劑。肽疫苗通常由化學合成技術制造。

    “超級細菌”疫苗獲批進入臨床試驗

      由第三軍醫大學與地方科技企業聯合研發的“超級細菌”疫苗——重組金黃色葡萄球菌疫苗,近日獲得國家食品藥品監督管理總局批準進行Ⅰ、Ⅱ、Ⅲ期臨床研究,標志著該研究已取得階段性重要成果。  “超級細菌”泛指臨床上出現的多種耐藥菌,其可怕之處并不在于它對人體的殺傷力,而是它對抗生素的抵抗能力。它能在人身上

    “超級細菌”疫苗獲批進入臨床試驗

    由第三軍醫大學與地方科技企業聯合研發的“超級細菌”疫苗——重組金黃色葡萄球菌疫苗,近日獲得國家食品藥品監督管理總局批準進行Ⅰ、Ⅱ、Ⅲ期臨床研究,標志著該研究已取得階段性重要成果。 “超級細菌”泛指臨床上出現的多種耐藥菌,其可怕之處并不在于它對人體的殺傷力,而是它對抗生素的抵抗能力

    細菌疫苗載體的功能特點

    中文名稱細菌疫苗載體英文名稱bacterial vaccine vector定  義作為疫苗載體的細菌性疫苗株。如卡介苗菌。應用學科免疫學(一級學科),應用免疫(二級學科),免疫預防(三級學科)

    細菌疫苗的功能和應用特點

    細菌感染性疾病是一類嚴重危害人類健康的疾病,目前,臨床上用于治療細菌感染性疾病的藥物主要為抗菌藥物,但抗菌藥物的濫用導致耐藥菌尤其是多重耐藥菌迅速增加,使其不能有效控制感染,成為臨床處理的難題,也給社會帶來了沉重的經濟負擔。細菌疫苗能提高易感人群對病原菌的抵抗力,降低病原菌感染的發生率,有利于感染性

    載體疫苗的作用特點和功能優勢

    載體疫苗將抗原基因通過無害的微生物這種載體進入體內誘導免疫應答。它的特點是組合了減毒活疫苗強有力的免疫原性和亞單位疫苗的準確度兩個優勢。這種活載體疫苗的一個顯著好處是可以有效在體內誘導細胞免疫,這在目前誘導細胞免疫方法還不夠好、細胞免疫在一些疾病又特別重要的背景下顯得很有前景。在試驗中使用的重要載體

    核酸疫苗的作用特點和功能優勢

    核酸疫苗也稱之為DNA疫苗或裸DNA疫苗。它與活疫苗的關鍵不同之處是編碼抗原的DNA不會在人或動物體內復制。核酸疫苗應包含一個能在哺乳細胞高效表達的強啟動子元件例如人巨細胞病毒的中早期啟動子;同時也需含有一個合適的mRNA轉錄終止序列。肌內注射后,DNA進入胞漿,然后到達肌細胞核,但并不整合到基因組

    滅活疫苗的作用特點和功能優勢

    滅活疫苗(inactivated vaccine)與減毒活疫苗相比滅活疫苗采用的是非復制性抗原(死疫苗),因此,其安全性好,但免疫原性也變弱,往往必須加強免疫。需要注意的是,并不是所有病原體經滅活后均可以成為高效疫苗:其中一些疫苗是高效的,如索爾克注射用脊髓灰質炎疫苗(IPV)或甲肝疫苗;其它則是一

    減毒活疫苗的作用特點和功能優勢

    減毒活疫苗(live‐attenuated vaccine)這一類的病毒疫苗多具有超過90%的效力,其保護作用通常延續多年。它的突出優勢是病原體在宿主復制產生一個抗原刺激,抗原數量、性質和位置均與天然感染相似,所以免疫原性一般很強,甚至不需要加強免疫。這種突出的優勢同時也存在潛在的危險性:在免疫力差

    類毒素疫苗的作用特點和功能優勢

    當疾病的病理變化主要是由于強力外毒素或腸毒素引起時,類毒素疫苗具有很大的意義,如破傷風和白喉的疫苗。一般來說,腸毒素的類毒素很少成功。然而腸毒素型大腸桿菌的熱穩定性腸毒素(LT)經遺傳改造的去毒變構體,有希望成為有效的旅行者腹瀉疫苗。霍亂毒素(CT)對應的突變可能成為更為重要的疫苗。這兩種毒素的變異

    與超級細菌賽跑:尋找新型抗生素

      近日,由澳大利亞昆士蘭大學分子生物研究所領導的開放式抗菌藥物發現組織(CO-ADD),發起了“全球搜尋新抗生素”項目,邀請全球化學家提交自己的化合物,進行抗菌活性篩查。  CO-ADD發言人馬克·布萊斯科維奇稱,未來具有高耐藥性的細菌很可能會迅速傳播。這也是該組織發起這一項目的原因所在,希望在“

    超級細菌的中國現實

      10月26日,中國疾病預防控制中心公布,在對既往收集保存的菌株進行監測中,發現了3株NDM-1基因陽性細菌(即超級細菌)。  自從8月國外報道有患者感染攜帶NDM-1基因細菌以來,中國有沒有“超級細菌”(Superbug)的問題就是公眾的關注焦點,直到此次公布之前一星期,中國的官方說法

    扼住超級細菌的“命門”

       中科院生物物理所研究生喬帥,博士畢業延期了一年。讓他始料未及的是,自己的科研生涯在這段難熬的日子里居然柳暗花明了。  不久前,《自然》雜志刊登了其導師黃億華領導的研究小組對細菌脂多糖轉運組裝膜蛋白復合體(LptD-LptE)的結構解析,為設計抗擊“超級細菌”藥物鋪平了道路,喬帥是論文第一作者。

    現代新型細菌疫苗的研究與發展

    20世紀后期至今,分子生物學、免疫學、微生物學等相關科學發展迅猛。以此為基礎,細菌疫苗又有了較大的發展,出現了組分疫苗、DNA疫苗等多種現代新型細菌疫苗,這為研發及生產更加安全、性質穩定、保護性好的細菌疫苗帶來新的希望。現將這幾種現代新型疫苗介紹如下。1、 組分疫苗經典的減毒活疫苗和滅活疫苗是細菌疫

    什么是超級細菌?

    “超級細菌”(superbugs)是指對抗生素有超強耐藥性細菌的統稱。隨著抗生素濫用問題日益嚴重,耐藥細菌不斷出現并呈全球化流行趨勢,“超級細菌”的家族也越來越龐大,已成為引起臨床感染的嚴重病原菌,可能面臨無藥可治的境地。2014年世界衛生組織發布的《抗菌素耐藥:全球監測報告》顯示:每年美國因感染超

    可食用的疫苗的作用特點和功能優勢

    此類疫苗的載體是采用可食用的植物如馬鈴薯、香蕉、番茄的細胞,通過食用其果實或其它成分而啟動保護性免疫反應。植物細胞作為天然生物膠囊可將抗原有效遞送到粘膜下淋巴系統。這是目前為數不多的有效啟動粘膜免疫的形式。因此,對于粘膜感染性疾病有很好的發展前景。

    核酸疫苗的優勢

      與傳統的滅活疫苗、亞單位疫苗和基因工程疫苗相比,核酸疫苗具有如下優點:1 免疫保護力增強  接種后蛋白質在宿主細胞內表達,直接與組織相容性復合物MHCI或II類分子結合,同時引起細胞和體液免疫,對慢性病毒感染性疾病等依賴細胞免疫清除病原的疾病的預防更加有效。  2 制備簡單,省時省力  核酸疫苗

    核酸疫苗的優勢

    核酸疫苗具有潛在而巨大的優越性:①DNA疫苗是誘導產生細胞毒性T細胞應答的為數不多的方法之一;②可以克服蛋白亞基疫苗易發生錯誤折疊和糖基化不完全的問題;③穩定性好,大量的變異可能性很小,易于質量監控;④生產成本較低。⑤理論上可以通過多種質粒的混合物或者構建復雜的質粒來實現多價疫苗。⑥理論上抗原合成穩

    德國與非洲國家將聯手對付超級細菌

      德國薩爾大學6月24日發表公報說,為了找到對付在非洲肆虐的金黃色葡萄球菌的辦法,德國與非洲眾多大學和科研機構將在未來數年攜手合作。  金黃色葡萄球菌被稱為超級細菌。它的活動非常隱蔽,能夠在人和動物的皮膚上繁殖卻不引起癥狀。然而當打針、手術或者皮膚受傷時病菌會侵入體內,引起嚴重

    核酸疫苗較其它疫苗的優勢

    與傳統的滅活疫苗、亞單位疫苗和基因工程疫苗相比,核酸疫苗具有如下優點:1 免疫保護力增強接種后蛋白質在宿主細胞內表達,直接與組織相容性復合物MHCI或II類分子結合,同時引起細胞和體液免疫,對慢性病毒感染性疾病等依賴細胞免疫清除病原的疾病的預防更加有效。2 制備簡單,省時省力核酸疫苗作為一種重組質粒

    治療超級細菌感染的介紹

      針對超級細菌的流行趨勢,研發新型抗生素或新的治療手段迫在眉睫。新型抗生素的研發周期長,且細菌耐藥的發展速度遠遠快于新藥的研發速度。而疫苗接種在人類健康史上對于控制嚴重致病菌的感染、流行起到了重要的作用,特異性疫苗將從源頭上控制超級細菌的傳播與感染。

    簡述超級細菌的耐藥機制

      1.細菌產生滅活酶或鈍化酶,破壞抗生素的結構,使其失去活性。  2.改變抗生素作用的靶位蛋白結構和數量,使細菌對抗生素不再敏感。  3.細菌細胞膜滲透性改變,使抗生素不能進入菌體內部。  4.細菌主動藥物外排泵作用,將抗生素排出菌體。  5.細菌生物被膜的形成,降低抗生素作用。

    分析超級細菌的產生原因

      基因突變是產生超級細菌的根本原因。細菌耐藥性的產生是臨床上廣泛應用抗生素的結果,而抗生素的濫用則加速了這一過程。抗生素的濫用使得處于平衡狀態的抗菌藥物和細菌耐藥之間的矛盾被破壞,具有耐藥能力的細菌也通過不斷的進化與變異,獲得針對不同抗菌藥物耐藥的能力,這種能力在矛盾斗爭中不斷強化,細菌逐步從單一

    我國首個超級細菌疫苗獲批臨床研究-取得階段性成果

      近日,由第三軍醫大學與地方科技公司聯研的我國首個超級細菌疫苗——重組金黃色葡萄球菌疫苗,獲得國家食品藥品監督管理總局批準Ⅰ、Ⅱ、Ⅲ期臨床研究,標志著該研究已取得階段性重要成果。  “超級細菌”泛指臨床上出現的多種耐藥菌,它對許多抗生素具有抵抗能力。而在我國,13億人所使用的抗生素總量為全世界60

    怎樣預防超級細菌感染?

      超級細菌與曾經大規模暴發流行的非典、甲型H1N1流感不一樣,非典和甲型H1N1流感是由病毒引起的傳染病,可以在人-人、人-動物之間傳遞。超級細菌引起的是細菌感染,不是傳染病,而且一般發生在醫院里,雖然它耐藥性強,但致病力并不強。WHO建議勤洗手為一種防止傳染的措施。

    “超級細菌”:我們如何應對?

      近期印度、巴基斯坦、比利時等國出現的“超級細菌”引起社會廣泛關注,“超級細菌”究竟是什么細菌?其致病力如何?應如何防范感染?請關注——“超級細菌”:我們如何應對?   “超級細菌”基因強悍   “超級細菌”近來引發全球關注,英國因其科研人員主導相關研究和國內病例數量較多而成為這一事件的焦點。

    超級細菌來襲--細菌耐藥已成“全球威脅”

      青霉素對許多致病菌不起作用了;結核病常規特效藥對相當數量的病人失效了;青蒿素在非洲也遇到了耐藥……   日前,中科院生物物理所等單位在《自然—基因組學》上發表了揭示結核分枝桿菌耐藥性的文章;與此同時,中科院武漢病毒所在《艾滋病免疫綜合征》上發表了關于HIV基因進化與傳播耐藥研究的

    細菌疫苗的分類

      1.活菌苗:常用者有預防結核病的卡介苗(BCG)、 鼠疫活菌苗等。制備活菌苗的關鍵在于獲得減毒或無毒菌株,但該菌株應保持免疫原性。例如卡介苗系將 結核桿菌在人工 培養基上傳230代(經13年)后獲得。痢疾桿菌的依賴鏈霉素菌株則是通過選擇后獲得的突變株。活菌苗接種后,在體內有一定的生長繁殖能力,類

    人体艺术视频