GDNF影響神經元的發育和分化的作用介紹
不同腦區在不同發育期的GDNFmRNA表達的量有所不同,如紋狀體在生后零天(P0)表達量達高峰;小腦在出生時和成年期有一個短暫的高表達。隨年齡的增長,中樞神經系統的GDNFmRNA水平出現明顯下降趨勢,到成年期,大部分區域僅有很低表達。因此,GDNF可能對發育期的多種神經元的存活和分化起重要作用。......閱讀全文
GDNF影響神經元的發育和分化的作用介紹
不同腦區在不同發育期的GDNFmRNA表達的量有所不同,如紋狀體在生后零天(P0)表達量達高峰;小腦在出生時和成年期有一個短暫的高表達。隨年齡的增長,中樞神經系統的GDNFmRNA水平出現明顯下降趨勢,到成年期,大部分區域僅有很低表達。因此,GDNF可能對發育期的多種神經元的存活和分化起重要作用
GDNF的生物學效應影響神經元的發育和分化
不同腦區在不同發育期的GDNFmRNA表達的量有所不同,如紋狀體在生后零天(P0)表達量達高峰;小腦在出生時和成年期有一個短暫的高表達。隨年齡的增長,中樞神經系統的GDNFmRNA水平出現明顯下降趨勢,到成年期,大部分區域僅有很低表達。因此,GDNF可能對發育期的多種神經元的存活和分化起重要作用。
GDNF支持運動神經元的存活的作用
GDNF還是最強的膽堿能運動神經營養因子,幾十至幾百倍于BDNF和CNTF對運動神經元的作用,支持運動神經元的存活。如用海人酸或毛果蕓香堿損傷腦內神經元,能導致癲癇發作并能誘發海馬、紋狀體和皮質等區的GDNFmRNA表達,提示GDNF在神經元的損傷過程中同樣起保護作用。 GDNF和GFRα1缺
GDNF對交感、副交感和感覺神經元的營養作用
GDNF能促進多種外周神經元包括交感神經元、副交感神經元及感覺神經元的存活。GDNF不僅對發育中的神經元有營養作用,而且能促進培養的交感和副交感神經元及本體感覺、內臟感覺和皮膚感覺神經元的存活。GDNF、GFRα1或Ret缺陷大鼠中副交感神經節一耳神經節和蝶腭神經節缺失,來源于迷走神經和骶部副交
GDNF的生物學效應對交感、副交感和感覺神經元的營養作用
GDNF能促進多種外周神經元包括交感神經元、副交感神經元及感覺神經元的存活。GDNF不僅對發育中的神經元有營養作用,而且能促進培養的交感和副交感神經元及本體感覺、內臟感覺和皮膚感覺神經元的存活。GDNF、GFRα1或Ret缺陷大鼠中副交感神經節一耳神經節和蝶腭神經節缺失,來源于迷走神經和骶部副交感的
關于T淋巴細胞的發育和分化的介紹
多能干細胞轉變為淋巴樣前體細胞(Lymphoid precursor)遷移至胸腺,在胸腺素的誘導下,經歷一系列有序的分化過程,逐漸在胸腺發育成熟為識別各種抗原的T細胞庫。T淋巴細胞進入胸腺后首先經歷兩個階段:①早期T淋巴細胞發育階段,即始祖CIM和CD8雙陰性T淋巴細胞(double negat
細胞分化的特點和影響因素介紹
細胞分化的特點包括:① 細胞分化的潛能隨個體發育進程逐漸“縮窄”,在胚胎發育過程中,細胞逐漸由“全能”到“多能”,最后向“單能”的趨向,是細胞分化的一般規律;② 細胞分化具有時空性,在個體發育過程中,多細胞生物細胞既有時間上的分化,也有空間上的分化;③ 細胞分化與細胞的分裂狀態和速度相適應,分化必須
T淋巴細胞的發育和分化
多能干細胞轉變為淋巴樣前體細胞(Lymphoid precursor)遷移至胸腺,在胸腺素的誘導下,經歷一系列有序的分化過程,逐漸在胸腺發育成熟為識別各種抗原的T細胞庫。T淋巴細胞進入胸腺后首先經歷兩個階段:①早期T淋巴細胞發育階段,即始祖CIM和CD8雙陰性T淋巴細胞(double negativ
T淋巴細胞的發育和分化
多能干細胞轉變為淋巴樣前體細胞(Lymphoid precursor)遷移至胸腺,在胸腺素的誘導下,經歷一系列有序的分化過程,逐漸在胸腺發育成熟為識別各種抗原的T細胞庫。T淋巴細胞進入胸腺后首先經歷兩個階段:①早期T淋巴細胞發育階段,即始祖CIM和CD8雙陰性T淋巴細胞(double negat
移植器官的發育和分化以及移植的安全性介紹
胚胎干細胞在體外發展成大而復雜的器官,如心臟、肝臟、腎臟、肺等大型精密復雜的器官。器官的形成是一個非常復雜的三維過程,許多器官是兩個以上的不同器官,它是由胚層組織相互作用形成的。例如,肺的肌肉細胞、血管和結締組織源自中胚層,神經源自外胚層。這在體外更難做到。同時,為了使細胞獲得營養和分泌代謝產物,分
胸腺依賴淋巴細胞的發育和分化
多能干細胞轉變為淋巴樣前體細胞(Lymphoid precursor)遷移至胸腺,在胸腺素的誘導下,經歷一系列有序的分化過程,逐漸在胸腺發育成熟為識別各種抗原的T細胞庫。T淋巴細胞進入胸腺后首先經歷兩個階段:①早期T淋巴細胞發育階段,即始祖CIM和CD8雙陰性T淋巴細胞(double negat
影響細胞分化的因素介紹
細胞分化受到很大內外因素的影響,如細胞自身的極性、體內激素和某些特定化學成分,以及相對應的空間位置和環境中的光照、溫度、壓力、水分等都可能在一定程度上影響生物體內的細胞分化。例如,無尾兩棲類的蝌蚪變態過程中起重要作用的甲狀腺素和昆蟲變態過程中的2一羥蛻皮素及保幼素等激素,都由它們的內分泌腺釋放,從而
單核巨噬細胞系統的分化發育介紹
MPS細胞起源于骨髓,其分化與更新受細胞因子復雜網絡的調控。在某些細胞因子,如多集落刺激因子(multi-colonystimulatingfactormulti-CSF)、巨噬細胞集落刺激因子(macrophage-CSFGM-CSF)等的刺激下,骨髓中的髓樣干細胞經原單核細胞(monobla
GDNF的生物學效應促進DA能神經元的存活
體內、外實驗均證明GDNF對DA神經元有高度的親和力,是DA神經元的一個高度特異性神經營養因子。它不僅對體外培養的胚胎中腦DA能神經元有明顯的營養和促存活與分化作用,使神經元胞體增大、軸突延長;而且在體內,對黑質、紋狀體DA能系統亦有保護和修復作用。用MPTP處理小鼠,或用6一羥基多巴(6-OHDA
GDNF的生物學效應支持運動神經元的存活
GDNF還是最強的膽堿能運動神經營養因子,幾十至幾百倍于BDNF和CNTF對運動神經元的作用,支持運動神經元的存活。如用海人酸或毛果蕓香堿損傷腦內神經元,能導致癲癇發作并能誘發海馬、紋狀體和皮質等區的GDNFmRNA表達,提示GDNF在神經元的損傷過程中同樣起保護作用。GDNF和GFRα1缺陷的大鼠
首都醫科大學最新文章取得關鍵因子研究進展
來自首都醫科大學宣武醫院,教育部神經變性病學重點實驗室的研究人員針對一種關鍵的作用因子:膠質源性神經生長因子(glial cell derived neurotrophic factor, GDNF)展開研究,實現了人胚胎神經干細胞GDNF在體外培養條件下的表達調控,這對于帕金森病等神經
膠質細胞源性神經營養因子受體的信號轉導介紹
由于GFRα是GPI連接的胞外蛋白,缺乏跨膜和胞內結構域,無法單獨完成信號傳導。神經營養因子與GFRQ特異結合之后,尚需跨膜蛋白即Ret介導、協同作用,共同完成GDNF家族神經營養因子的信號傳導。GDNF同源二聚體分子可直接與單亞基或雙亞基的GFRα1結合形成復合物與Ret相互作用,導致Ret的
膠質細胞源性神經營養因子受體的信號轉導
由于GFRα是GPI連接的胞外蛋白,缺乏跨膜和胞內結構域,無法單獨完成信號傳導。神經營養因子與GFRQ特異結合之后,尚需跨膜蛋白即Ret介導、協同作用,共同完成GDNF家族神經營養因子的信號傳導。GDNF同源二聚體分子可直接與單亞基或雙亞基的GFRα1結合形成復合物與Ret相互作用,導致Ret的二聚
膠質細胞源性神經營養因子促進DA能神經元的存活的作用
體內、外實驗均證明GDNF對DA神經元有高度的親和力,是DA神經元的一個高度特異性神經營養因子。它不僅對體外培養的胚胎中腦DA能神經元有明顯的營養和促存活與分化作用,使神經元胞體增大、軸突延長;而且在體內,對黑質、紋狀體DA能系統亦有保護和修復作用。用MPTP處理小鼠,或用6一羥基多巴(6-OH
GDNF的生物學效應GDNF的基因敲除動物模型
gdnf-、gfmα1-或vet-knockout小鼠表現出相同的表型,即腎臟發育不全和胃腸道神經支配缺失,出生后不久全部死亡。gdnf-knockout大鼠中腦DA能神經元無明顯改變,可能有其他NT代償GDNF的作用。腰部脊髓運動神經元僅減少21%,頸上交感神經節中減少23%的神經元,睫狀節神經元
簡述GDNF對非神經系統的作用
除神經系統以外,GDNF對非神經系統也有作用,GDNF對腎臟的發育也是必需的。缺乏GDNF的小鼠腎臟發育不全,出現腎畸形。進一步的研究提示,GDNF對于輸尿管肢芽的發育也有重要作用,腎臟集合管的形態發生與GDNF有關。可見,除了促進神經系統的存活之外,GDNF對非神經系統的發育也起重要作用。
Salk研究所華人課題組發表新文章揭開p75蛋白真實身份
表面上愛管閑事的p75蛋白會引發疼痛,實際上,它是治療癌癥和其他神經疾病的隱藏機關。 感覺神經元控制大腦識別疼痛、觸覺、運動和空間定位。Salk研究所的研究表明p75蛋白在疼痛神經回路中起重要作用,結論將影響傷性脊髓損傷等疾病治療。 “p75蛋白是個愛管閑事的家伙,它參與各種不同信號通路,”
Science子刊:GDNF與神經祖細胞機制,有望治療脊髓損傷
神經祖細胞(NPC)是脊髓損傷后修復和再生神經元的一種潛在的治療方法。然而,受損脊髓中的有害微環境有助于在嚙齒動物中進行NPC移植后觀察到有限程度的恢復。 在一項新的研究中,來自加拿大多倫多大學等研究機構的研究人員發現在嚙齒動物的脊髓微環境中,脊髓損傷誘導的Notch激活使得移植到它們體內的N
簡述膠質細胞源性神經營養因子的分布
GDNF在中樞神經系統的不同腦區均有表達,較為肯定的細胞來源有Ⅰ型星狀膠質細胞、黑質一紋狀體系統和基底前腦的神經元等。在DA神經元投射區如基底節、嗅結節,與某些運動有關的神經結構如無名質、小腦蒲肯野細胞和三叉神經運動核,與某些感覺有關的結構如丘腦、三叉神經感覺核、脊髓后角和背根節以及藍斑核等均有
膠質細胞源性神經營養因子的分布情況
GDNF在中樞神經系統的不同腦區均有表達,較為肯定的細胞來源有Ⅰ型星狀膠質細胞、黑質一紋狀體系統和基底前腦的神經元等。在DA神經元投射區如基底節、嗅結節,與某些運動有關的神經結構如無名質、小腦蒲肯野細胞和三叉神經運動核,與某些感覺有關的結構如丘腦、三叉神經感覺核、脊髓后角和背根節以及藍斑核等均有相當
性別分化的影響因素
性別分化是一個極其復雜的個體發育過程。性別與其他性狀的出現一樣,都是遺傳因素和環境條件相互作用的結果。當內外環境有利于某一種性別的發育時,就有可能偏離性別決定的方向,形成不正常的雄體或雌體。現在已知道,能使性別分化偏離性別決定方向的因素有溫度、陽光、營養條件、性激素等,它們通過影響有關性別決定基因的
影響細胞分化的因素
細胞分化受到很大內外因素的影響,如細胞自身的極性、體內激素和某些特定化學成分,以及相對應的空間位置和環境中的光照、溫度、壓力、水分等都可能在一定程度上影響生物體內的細胞分化。例如,無尾兩棲類的蝌蚪變態過程中起重要作用的甲狀腺素和昆蟲變態過程中的2一羥蛻皮素及保幼素等激素,都由它們的內分泌腺釋放,從而
造血與血細胞分化發育
【知識點名稱】造血器官與造血微環境【進階攻略】該知識點為考試的重點內容,需詳細記憶各階段的造血器官。【知識點詳情】能夠生成并支持造血細胞分化、發育、成熟的組織器官稱為造血器官。造血器官生成各種血細胞的過程稱為造血。1.胚胎期造血 胚胎期可相繼分成三個不同的造血期。(1)中胚葉造血期:此期造血大約在人
NSCs定向分化為神經元的預測系統
神經干細胞(NSCs)具有自我更新和三系分化的潛能,能被誘導分化成神經元、星形膠質細胞和少突膠質細胞,具有重要的神經中樞神經系統疾病(CNS)再生修復研究和應用價值。將NSCs定向分化為神經元一直是該領域的重要研究方向,常見的誘導藥物包括有神經營養因子、小分子藥物或激素等。傳統的藥物篩選鑒定方法
細胞分化和特化的概念介紹
分化是指分生組織細胞發育成細胞、組織、器官、乃至整個個體,或者由其幼年至成熟的過程中,在生理上的、形態上的改變。此現象通常伴隨著特化的現象。特化 (specialization):由于功能、潛能、適應力等方面的限制,導致細胞、組織、器官、乃至整個個體的結構上的改變,使得個體能針對某種功能具有更大的效