X射線熒光光譜儀分類的相關介紹
按照色散方式的不同,X射線熒光光譜儀可以分為2類:波長色散型X射線熒光光譜儀(WDXRF)和能量色散型X射線熒光光譜儀(EDXRF)。 能量色散型x射線光譜儀 現代應用X射線熒光光譜分析技術目前已在地質、冶金、材料、環境等無機分析領域得到了廣泛的應用,是各種無機材料中主組分分析最重要的技術手段之一,各種與X射線熒光光譜相關的分析技術,如同步輻射XRF、全反射XRF光譜技術等,在痕量和超痕量分析中發揮著重要的作用。......閱讀全文
X射線熒光光譜儀分類的相關介紹
按照色散方式的不同,X射線熒光光譜儀可以分為2類:波長色散型X射線熒光光譜儀(WDXRF)和能量色散型X射線熒光光譜儀(EDXRF)。 能量色散型x射線光譜儀 現代應用X射線熒光光譜分析技術目前已在地質、冶金、材料、環境等無機分析領域得到了廣泛的應用,是各種無機材料中主組分分析最重要的技術手
X射線熒光光譜儀的分類介紹
根據X射線熒光的產生原理,一臺X射線熒光光譜儀在結構上主要由激發源、色散系統、探測系統等3部分組成。按照色散方式的不同,X射線熒光光譜儀可以分為2類:波長色散型X射線熒光光譜儀(WDXRF)和能量色散型X射線熒光光譜儀(EDXRF)。下面主要介紹波長色散型X射線熒光光譜儀(WDXRF)的儀器結構
X射線熒光光譜儀相關知識介紹
X射線熒光光譜儀是一種常用的光譜儀產品,可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。X射線熒光光譜儀具有靈明度強、度高、檢測范圍廣、自動快速等特點,廣泛應用于地質、冶金、有色金屬加工、建材、考古等領域,在主、次量和痕量元素分析中發揮的作用日趨重要
X射線熒光光譜儀熒光光譜的相關介紹
能量色散X射線熒光光譜采用脈沖高度分析器將不同能量的脈沖分開并測量。能量色散X射線熒光光譜儀可分為具有高分辨率的光譜儀,分辨率較低的便攜式光譜儀,和介于兩者之間的臺式光譜儀。高分辨率光譜儀通常采用液氮冷卻的 半導體探測器,如Si(Li)和高純鍺探測器等。低分辨便攜式光譜儀常常采用正比計數器或閃爍
X射線熒光儀器的分類介紹
X射線熒光儀器根據能量分辨的原理不同,可分為波長色散型、能量色散X射線型和非色散型。一臺典型的X射線熒光(XRF)儀器由激發源(X射線管)和探測系統構成。X射線管作為激發源,產生入射X射線(一次X射線)用于激發被測樣品,受激發的樣品中的每一種元素都會放射出二次X射線。由于不同的元素所放射出的二次
X射線熒光光譜儀X射線吸收的介紹
當X射線穿過物質時,一方面受散射作用偏離原來的傳播方向,另一方面還會經受光電吸收。光電吸收效應會產生X射線熒光和俄歇吸收,散射則包含了彈性和非彈性散射作用過程。 當一單色X射線穿過均勻物體時,其初始強度將由I0衰減至出射強度Ix,X射線的衰減符合指數衰減定律: 式中,μ為質量衰減系數;ρ為樣
X射線熒光光譜儀X射線的衍射介紹
相干散射與干涉現象相互作用的結果可產生X射線的衍射。X射線衍射與晶格排列密切相關,可用于研究物質的結構。 其中一種用已知波長λ的X射線來照射晶體樣品,測量衍射線的角度與強度,從而推斷樣品的結構,這就是X射線衍射結構分析(XRD)。 另一種是讓樣品中發射出來的特征X射線照射晶面間距d已知的晶體
X射線熒光光譜儀X射線散射的介紹
除光電吸收外,入射光子還可與原子碰撞,在各個方向上發生散射。散射作用分為兩種,即相干散射和非相干散射。 相干散射:當X射線照射到樣品上時,X射線便與樣品中的原子相互作用,帶電的電子和原子核就跟隨著X射線電磁波的周期變化的電磁場而振動。因原子核的質量比電子大得多,原子核的振動可忽略不計,主要是原
波長色散X射線熒光光譜儀相關介紹
X射線熒光光譜儀根據分光方式不同,可分為波長色散和能量色散X射線熒光光譜儀兩大類;根據激發方式又可細分為偏振光、同位素源、同步輻射和粒子激發X射線熒光光譜儀;根據X射線的出射、入角還可有全反射、掠出入射X射線熒光光譜儀等。波長色散XRF光譜儀利用分光晶體的衍射來分離樣品中的多色輻射,能量色散光譜儀則
X射線熒光光譜儀相關特點
?X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水平
X射線熒光分析的相關介紹
確定物質中微量元素的種類和含量的一種方法。它用外界輻射激發待分析樣品中的原子,使原子發出標識X射線(熒光),通過測量這些標識X射線的能量和強度來確定物質中微量元素的種類和含量。根據激發源的不同,可分成帶電粒子激發X熒光分析,電磁輻射激發X熒光分析和電子激發X熒光分析。
X射線熒光儀的相關介紹
X射線熒光儀一般是采用,激發樣品中的目標元素,使之產生特征X射線,通過測量特征X射線的照射量率來確定目標元素及其含量的儀器。 儀器分為室內分析、野外便攜式和X射線熒光測井儀三種類型。各種類型的儀器均由探測器和操作臺兩部分組成。由于目前使用的探測器(正比計數管及閃爍計數器)能量分辨率不高,不能區
全反射X射線熒光光譜儀技術相關介紹
全反射現象由Compton于1923年發現,1971年Yoneda等首次提出利用全反射現象來激發被測元素的特征譜線。這是一種超衡量檢測XRF技術。 XRF于1981年在德國問世,實質上是EDXRF的拓展,與常規EDXRF所具有的關鍵區別就在于其反射系統:TXRF通常有一級、二級或三級反射系
關于X射線熒光分析的分類介紹
1、根據分光方式的不同,X射線熒光分析可分為能量色散和波長色散兩類,也就是通常所說的能譜儀和波譜儀,縮寫為EDXRF和WDXRF。 通過測定熒光X射線的能量實現對被測樣品的分析的方式稱之為能量色散X射線熒光分析,相應的儀器稱之為能譜儀,通過測定熒光X射線的波長實現對被測樣品分析的方式稱之為波長
X射線熒光分析技術相關介紹
X光熒光分析又稱X射線熒光分析(XRF)技術,即是利用初級X射線光子或其他微觀粒子激發待測樣品中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學形態研究的方法。 X射線是一種電磁輻射,按傳統的說法,其波長介于紫外線和γ射線之間,但隨著高能電子加速器的發展,電子軔致輻射所產生的X射線的
X射線熒光光譜儀的分類有幾種
X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。X射線熒光光譜是一種常用的光譜技術,既可用于材料的組成成分分析,又可用于涂層和多層薄膜厚度的測量等。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水平,分
TXRF全反射X射線熒光光譜儀的相關介紹
TXRF全反射X射線熒光光譜儀快速多元素痕量分析可對固體、粉末、液體、懸浮物、過濾物、大氣飄塵、薄膜樣品等進行定性、定量分析,元素范圍13Al-92U。 需要樣品量少,液體及懸浮物樣品1-50微升,粉末樣品10微克以內。 便攜式全反射熒光儀,設備小巧,一體化結構設計,不需要任何輔助設備及氣體
X射線熒光分析技術的相關介紹
X射線熒光分析是確定物質中微量元素的種類和含量的一種方法。 X射線熒光分析又稱X射線次級發射光譜分析。本法系利用原級X射線光子或其它微觀粒子激發待測物質中的原子,使之產生次級的特征X射線(X光熒光)而進行物質成分分析和化學態研究的方法。1948年由H.費里德曼(H.Friedmann)和L.S
X射線熒光法的相關介紹
X射線熒光法是用,照射待測樣品,使受激元素產生二次特征X射線(即熒光),使用X射線熒光儀測量并記錄樣品中待測元素的特征X射線照射量率,從而確定樣品的成分和目標元素含量的方法。 方法的特點是操作簡單,速度快,可以進行原位測量,在現場獲得目標元素的含量;劃分礦與非礦的界限,代替或部分代替刻槽取樣。
X射線熒光的產生相關介紹
當一束粒子如X射線光子與一種物質的原子相互作用時,在其能量大于原子某一軌道電子的結合能時,就可從中逐出一個軌道電子而出現一個“空穴”,層中的這個“空穴”可稱作空位。原子要恢復到原來的穩定狀態,這時處于較高能級的電子將依據一定的規則躍遷而填補該“空穴”,這一過程將使整個原子的能量降低,因此可以自發
概述X射線熒光光譜儀X射線的產生
根據經典電磁理論,運動的帶電粒子的運動速度發生改變時會向外輻射電磁波。實驗室中常用的X射線源便是利用這一原理產生的:利用被高壓加速的電子轟擊金屬靶,電子被金屬靶所減速,便向外輻射X射線。這些X射線中既包含了連續譜線,也包括了特征譜線。 1、連續譜線 連續光譜是由高能的帶電粒子撞擊金屬靶面時受
X射線熒光光譜儀(XRF)的基本分類
作為一種比較分析技術,在一定的條件下,利用初級X射線光子或其他微觀粒子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析的儀器。 按激發、色散和探測方法的不同,分為: X射線光譜法(波長色散) X射線能譜法(能量色散)
X射線熒光分析技術分類
X射線熒光分析技術可以分為兩大類型:波長色散X射線熒光分析(WDXRF)和能量色散X射線熒光分析(EDXRF);而能量色散型又根據探測器的類型分為(Si-PIN)型和SDD型。在不同的應用條件下,這幾種類型的技術各有其突出的特點。目前,X射線熒光分析不僅材料科學、生命科學、環境科學等普遍采用的一
X射線熒光光譜儀的詳細介紹
X射線熒光光譜(XRF)是一種應用十分廣泛的元素分析方法,利用X射線熒光光譜儀可以直接分析固體、粉末和液體樣品,具有制樣簡單、測試效率高、可以進行非破壞性分析等特點。秒中對樣品進行快速合金分析,秒即可進行實驗室精度的測量。具有合金分析軟件,內嵌數百種常見合金號,中英文界面自由切換、操作簡易,即使
X射線熒光光譜儀的優點介紹
?X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象,適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。特別是在RoHS檢測領域應用得多也廣泛。?X射線熒光光譜儀的優點:?1) 分析速度快。測定用時與
X射線熒光光譜儀的優點介紹
X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象,適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。特別是在RoHS檢測領域應用得多也廣泛。?X射線熒光光譜儀的優點:?1) 分析速度快。測定用時與測
X射線熒光的簡介和相關儀器介紹
通常把X射線照射在物質上而產生的次級X射線叫做X射線熒光(X-Ray Fluorescence),而把用來照射的X射線稱為原級X射線,所以X射線熒光光譜儀仍然屬于X射線范疇。一臺典型的X射線熒光光譜儀主要由激發源(X射線管)和探測系統構成。X射線管主要負責產生入射X射線(一次X射線),隨后該射線
X-射線熒光光譜儀
用X射線照射試樣時,試樣可以被激發出各種波長的熒光X射線,需要把混合的X射線按波長(或能量)分開,分別測量不同波長(或能量)的X射線的強度,以進行定性和定量分析,為此使用的儀器叫X射線熒光光譜儀。由于X光具有一定波長,同時又有一定能量,因此,X射線熒光光譜儀有兩種基本類型:波長色散型和能量色散型。圖
X射線熒光光譜儀X射線光管結構
常規X射線光管主要采用端窗和側窗兩種設計。普通X射線光管一般由真空玻璃管、陰極燈絲、陽極靶、鈹窗以及聚焦柵極組成,并利用高壓電纜與高壓發生器相接,同時高功率光管還需要配有冷卻系統。側窗和端窗X射線光管結構如圖6和圖7所示。 當電流流經X射線光管燈絲線圈時,引起陰極燈絲發熱發光,并向四周發射電子
X熒光光譜儀的分類介紹
X熒光光譜儀可分為能量色散(EDXRF)和波長色散(WDXRF)兩大類,隨后將詳細介紹。可分析的元素及檢測限主要取決于所用的光譜儀系統。EDXRF分析的元素從Na到U;WDXRF分析的元素從Be到U。濃度范圍從ppm到100%。通常重元素的檢測限優于輕元素。