關于X射線的發現歷史介紹
1895年11月8日傍晚,他研究陰極射線。為了防止外界光線對放電管的影響,也為了不使管內的可見光漏出管外,他把房間全部弄黑,還用黑色硬紙給放電管做了個封套。為了檢查封套是否漏光,他給放電管接上電源(茹科夫線圈的電極),他看到封套沒有漏光而滿意。可是當他切斷電源后,卻意外地發現一米以外的一個小工作臺上有閃光,閃光是從一塊熒光屏上發出的。然而陰極射線只能在空氣中進行幾個厘米,這是別人和他自己的實驗早已證實的結論。于是他重復剛才的實驗,把屏一步步地移遠,直到2米以外仍可見到屏上有熒光。倫琴認為這不是陰極射線了。倫琴經過反復實驗,確信這是種尚未為人所知的新射線,便取名為X射線。他發現X射線可穿透千頁書、2~3厘米厚的木板、幾厘米厚的硬橡皮、15毫米厚的鋁板等等。可是1.5毫米的鉛板幾乎就完全把X射線擋住了。他偶然發現X射線可以穿透肌肉照出手骨輪廓,于是有一次他夫人到實驗室來看他時,他請她把手放在用黑紙包嚴的照相底片上,然后用X射線對......閱讀全文
關于X射線的發現歷史介紹
1895年11月8日傍晚,他研究陰極射線。為了防止外界光線對放電管的影響,也為了不使管內的可見光漏出管外,他把房間全部弄黑,還用黑色硬紙給放電管做了個封套。為了檢查封套是否漏光,他給放電管接上電源(茹科夫線圈的電極),他看到封套沒有漏光而滿意。可是當他切斷電源后,卻意外地發現一米以外的一個小工作
X射線的發現歷史
最早發現X射線是特斯拉,特斯拉制定了許多實驗來產生X射線。特斯拉認為用他的電路,“我的儀器可以產生的愛克斯光(即X射線)的能量比一般儀器可以產生的要大的多。” 他還談到用他的電路和單節點X射線產生設備在工作時的危害。在他許多調查這種現象的記錄中,他歸結了導致皮膚損傷的許多原因。他認為早期的皮膚
X射線的發現歷史及原理
發現歷史 最早發現X射線是特斯拉,特斯拉制定了許多實驗來產生X射線。特斯拉認為用他的電路,“我的儀器可以產生的愛克斯光(即X射線)的能量比一般儀器可以產生的要大的多。” 他還談到用他的電路和單節點X射線產生設備在工作時的危害。在他許多調查這種現象的記錄中,他歸結了導致皮膚損傷的許多原因。他認
關于x光機的X射線發現的介紹
X射線發現 1895年德國物理學家倫琴(W.C.R?ntgen)在研究陰極射線管中氣體放電現象時,用一只嵌有兩個金屬電極(一個叫做陽極,一個叫做陰極)的密封玻璃管,在電極兩端加上幾萬伏的高壓電,用抽氣機從玻璃管內抽出空氣。為了遮住高壓放電時的光線(一種弧光)外泄,在玻璃管外面套上一層黑色紙板。
X射線晶體衍射學的發現與歷史
1912 年在人類的科學史上是一個重要的年份、一個里程碑式的年份,因為德國科學家勞厄(Maxvon Laue, 1879-1960)在這一年發現了X 射線晶體衍射現象,并開創了X 射線衍射物理學的研究。緊接著,英國科學家小布拉格(William LawrenceBragg,1890-1971)在
X射線熒光儀器的歷史介紹
X射線熒光儀器是指波長為0.01~10nm的電磁波,1895年倫琴(W. C. Roentgen)在使用放電管工作時發現了X射線,因為這一個重大發現,倫琴于1901年獲得了諾貝爾獎。1913年莫斯萊(H. G. Moseley)建立了X射線波長與原子序數的關系,奠定了X射線熒光光譜分析的基礎,第
X射線晶體定向衍射歷史介紹
射線晶體衍射是人們了解原子世界的利器,這一技術為人們解析了大量的重要生物學結構。今年是這一技術的百年誕辰,本期Nature雜志以特刊形式,介紹了X射線晶體衍射的過去、現在和將來。1914年,德國科學家Max?von?Laue因為發現晶體中的X射線衍射現象,獲得了諾貝爾物理學獎,這一發現直接催生了X射
關于X射線的原理介紹
產生X射線的最簡單方法是用加速后的電子撞擊金屬靶。撞擊過程中,電子突然減速,其損失的動能會以光子形式放出,形成X光光譜的連續部分,稱之為軔致輻射。通過加大加速電壓,電子攜帶的能量增大,則有可能將金屬原子的內層電子撞出。于是內層形成空穴,外層電子躍遷回內層填補空穴,同時放出波長在0.1nm左右的光
關于X射線診斷的介紹
X射線應用于醫學診斷,主要依據X射線的穿透作用、差別吸收、感光作用和熒光作用。由于X射線穿過人體時,受到不同程度的吸收,如骨骼吸收的X射線量比肌肉吸收的量要多,那么通過人體后的X射線量就不一樣,這樣便攜帶了人體各部密度分布的信息,在熒光屏上或攝影膠片上引起的熒光作用或感光作用的強弱就有較大差別,
關于X射線的本質的介紹
X射線的本質是電磁輻射,具有波粒二像性。 1)波動性 X射線的波長范圍:0.01~100 用于元素分析的X射線光譜所使用的波長范圍在0.01~11nm 2)粒子性 特征表現為以光子形式輻射和吸收時具有的一定的質量、能量和動量。 表現形式為在與物質相互作用時交換能量。如光電效應、熒光輻
關于乙烯的發現歷史介紹
中國古代就發現將果實放在燃燒香燭的房子里可以促進采摘果實的成熟。19世紀德國人發現在泄露的煤氣管道旁的樹葉容易脫落。第一個發現植物材料能產生一種氣體,并對鄰近植物能產生影響的是卡曾斯,他發現橘子產生的氣體能催熟與其混裝在一起的香蕉。直到1934年甘恩(Gane)才首先證明植物組織確實能產生乙烯。
關于X射線的生物特性介紹
X射線照射到生物機體時,可使生物細胞受到抑制、破壞甚至壞死,致使機體發生不同程度的生理、病理和生化等方面的改變。不同的生物細胞,對X射線有不同的敏感度,可用于治療人體的某些疾病,特別是腫瘤的治療。在利用X射線的同時,人們發現了導致病人脫發、皮膚燒傷、工作人員視力障礙,白血病等射線傷害的問題,在應
關于X射線的化學特性介紹
1、感光作用。X射線同可見光一樣能使膠片感光。膠片感光的強弱與X射線量成正比,當X射線通過人體時,因人體各組織的密度不同,對X射線量的吸收不同,膠片上所獲得的感光度不同,從而獲得X射線的影像。 2、著色作用。X射線長期照射某些物質如鉑氰化鋇、鉛玻璃、水晶等,可使其結晶體脫水而改變顏色。
關于X-射線管的基本介紹
X 射線管是工作在高電壓下的真空二極管,其包含有兩個電極:一個是用于發射電子的燈絲,作為陰極;另一個是用于接受電子轟擊的靶材,作為陽極。兩級均被密封在高真空的玻璃或陶瓷外殼內。施加到該燈絲上的電流使其加熱至1000攝氏度,因此它能發射出電子。一旦燈絲發射出電子,在燈絲和陽極之間施加高電壓以加速電
關于X射線的化學效應介紹
(1)感光作用。X射線同可見光一樣能使膠片感光。膠片感光的強弱與X射線量成正比,當X射線通過人體時,因人體各組織的密度不同,對X射線量的吸收不同,膠片上所獲得的感光度不同,從而獲得X射線的影像。 (2)著色作用。X射線長期照射某些物質如鉑氰化鋇、鉛玻璃、水晶等,可使其結晶體脫水而改變顏色。
關于核酸的發現歷史的介紹
核酸最早于1869年由瑞士醫生和生物學家弗雷德里希·米歇爾分離獲得,稱為Nuclein。 在19世紀80年代早期,德國生物化學學家,1910年諾貝爾生理和醫學獎獲得者科塞爾進一步純化獲得核酸,發現了它的強酸性。他后來也確定了核堿基。 1889年,德國病理學家Richard Altmann創造
X射線頭部CT機的發展歷史
1963年,美國物理學家科馬克發現人體不同的組織對X線的透過率有所不同,在研究中還得出了一些有關的計算公式,這些公式為后來CT的應用奠定了理論基礎。 1972年第一臺CT誕生,僅用于顱腦檢查,4月份亨斯菲爾德在英國放射學年會上首次公布了這一結果,正式宣告了CT的誕生。 1974年制成全身CT
關于基因剪接的歷史發現介紹
1972年,加州大學舊金山分校的微生物學家赫伯特·伯耶(Herbert Boyer)、斯坦福大學的研究員史坦利·科恩(Stanley Cohen)在火奴魯魯參加學術會議時在一家現成食品店里遇到了對方。他們一邊吃著熏牛肉三明治,一邊構思除了一個開創了現代生物技術產業的實驗。回到加州后,這兩個人成功
關于元素汞的發現歷史介紹
汞在自然界中分布量極小,被認為是稀有金屬,但是人們很早就發現了水銀。天然的硫化汞又稱為朱砂,由于具有鮮紅的色澤,因而很早就被人們用作紅色顏料。根據殷虛出土的甲骨文上涂有丹砂,可以證明中國在有史以前就使用了天然的硫化汞。 根據中國古文獻記載:在秦始皇死以前,一些王侯在墓葬中也早已使用了灌輸水銀,
關于微RNA的歷史發現介紹
MicroRNA(miRNA)是一類內生的、長度約20-24個核苷酸的小RNA,其在細胞內具有多種重要的調節作用。每個miRNA可以有多個靶基因,而幾個miRNAs也可以調節同一個基因。這種復雜的調節網絡既可以通過一個miRNA來調控多個基因的表達,也可以通過幾個miRNAs的組合來精細調控某個
關于鋰元素的發現歷史-介紹
第一塊鋰礦石,透鋰長石(LiAlSi4O10)是由巴西人在名為Ut?的瑞典小島上發現的,于18世紀90年代。當把它扔到火里時會發出濃烈的深紅色火焰,斯德哥爾摩的Johan August Arfvedson分析了它并推斷它含有以前未知的金屬,他把它稱作lithium(鋰)。他意識到這是一種新的堿金
關于重疊基因的歷史發現介紹
重疊基因 是在1977年發現的。早在1913年A.H.斯特蒂文特已在果蠅中證明了基因在染色體上作線狀排列,50年代對基因精細結構和順反位置效應等研究的結果也說明基因在染色體上是一個接著一個排列而并不重疊。但是1977年F.桑格在測定噬菌體ΦX174的DNA的全部核苷酸序列時,卻意外地發現基因D中
關于EB病毒的發現歷史介紹
1964年 Epstein等首先發現本病毒,而命名為 EpsteinBarr virus(EB病毒)。EB病毒是一種嗜淋巴細胞的人皰疹病毒。只有B淋巴細胞才有EB病毒受體。EB病毒侵入B細胞后,可以呈產毒性感染,即可使細胞產生早期抗原,以及病毒復制,釋放病毒顆粒。亦可呈非產毒性感染,即在細胞內中
關于元素碳的發現歷史介紹
碳的英文名稱carbon來源于拉丁文中煤和木炭的名稱carbo,也來源于法語中的charbon,意思是木炭。 [1] 在德國、荷蘭和丹麥,碳的名字分別是Kohlenstoff、koolstof、kulstof,字面意思是煤物質。 碳在史前就已被發現,炭黑和煤是人類最早使用碳的形式。鉆石大約在公
關于轉座因子的發現歷史介紹
在50年代以前,人們對于基因的認識一般是每一個基因組的DNA的量是固定的,它包括數目固定,位置固定、功能固定的一系列基因,以保持生物性狀能穩定地遺傳下去。但同時,基因也會發生突變。一般自發突變的頻率是很低的,當然也存在著高突變頻率的現象,這說明在基因組中存在高度不穩定的基因,很長時間人們忽視了這
關于原電池的發現歷史介紹
原電池的發明歷史可追溯到18世紀末期,當時意大利生物學家伽伐尼正在進行著名的青蛙實驗,當用金屬手術刀接觸蛙腿時,發現蛙腿會抽搐。大名鼎鼎的伏特認為這是金屬與蛙腿組織液(電解質溶液)之間產生的電流刺激造成的。1800年,伏特據此設計出了被稱為伏打電堆的裝置,鋅為負極,銀為正極,用鹽水作電解質溶液。
關于糖酵解的發現歷史介紹
1897年,德國生化學家E.畢希納發現離開活體的釀酶具有活性以后,極大地促進了生物體內糖代謝的研究。釀酶發現后的幾年之內,就揭示了糖酵解是動植物和微生物體內普遍存在的過程。英國的F.G.霍普金斯等于1907年發現肌肉收縮同乳酸生成有直接關系。英國生理學家A.V.希爾,德國的生物化學家O.邁爾霍夫
X射線的介紹
X射線(X-ray,倫琴射線)是由于原子中的電子在能量相差懸殊的兩個能級之間的躍遷而產生的粒子流,是一種電磁波,由德國物理學家W.K.倫琴于1895年發現[1]。 X射線具有很高的穿透性,被用于醫學成像診斷。2017年10月27日,世界衛生組織國際癌癥研究機構將X射線放置在致癌物清單中。
關于X射線管的故障分析介紹
故障一 :旋轉陽極轉子的故障 (1)現象 ① 電路正常,但轉速明顯下降;靜轉時間短;曝光時陽極不轉動 ; ② 曝光時,管電流劇增,電源保險絲熔斷 ;陽極靶面某點被熔化。 (2)分析 長期工作后導致軸承磨損變形及間隙改變,固體潤滑劑分子結構也會改變。 故障二 :X 射線管陽極靶面損壞
關于X射線衍射儀的應用介紹
Olympus便攜式X 射線衍射儀BTX可能直接分析出巖石的礦物組成及相對含量,并形成了定性、定量的巖性識別方法,為錄井隨鉆巖性快速識別、建立地質剖面提供了技術保障。 每種礦物都具有其特定的X 射線衍射圖譜,樣品中某種礦物含量與其衍射峰和強度成正相關關系。在混合物中,一種物質成分的衍射圖譜與其