X射線熒光分析實驗所用的儀器介紹
根據分光方式的不同,X射線熒光分析可分為能量色散和波長色散兩類,也就是通常所說的能譜儀和波譜儀,縮寫為EDXRF和WDXRF。 通過測定熒光X射線的能量實現對被測樣品的分析的方式稱之為能量色散X射線熒光分析,相應的儀器稱之為能譜儀,通過測定熒光X射線的波長實現對被測樣品分析的方式稱之為波長色散X射線熒光分析,相應的儀器稱之為X射線熒光光譜儀。 根據激發方式的不同,X射線熒光分析儀可分為源激發和管激發兩種:用放射性同位素源發出的X射線作為原級X射線的X熒光分析儀稱為源激發儀器;用X射線發生器(又稱X光管)產生原級X射線的X熒光分析儀稱為管激發儀器。 就能量色散型儀器而言,根據選用探測器的不同,X射線熒光分析儀可分為半導體探測器和正比計數管兩種主要類型。 根據分析能力的大小還可分為多元素分析儀器和個別元素分析儀器。這種稱呼多用于能量色散型儀器。 在波長色散型儀器中,根據可同時分析元素的多少可分為,單道掃描X熒光光譜儀、......閱讀全文
X射線熒光分析實驗所用的儀器介紹
根據分光方式的不同,X射線熒光分析可分為能量色散和波長色散兩類,也就是通常所說的能譜儀和波譜儀,縮寫為EDXRF和WDXRF。 通過測定熒光X射線的能量實現對被測樣品的分析的方式稱之為能量色散X射線熒光分析,相應的儀器稱之為能譜儀,通過測定熒光X射線的波長實現對被測樣品分析的方式稱之為波長色散
X射線熒光分析所用儀器的組成介紹
X射線發生系統:產生初級高強X射線,用于激發樣品; 冷卻系統:用于冷卻產生大量熱的X射線管; 樣品傳輸系統:將放置在樣品盤中的樣品傳輸到測定位置; 分光檢測系統:把樣品產生的X射線熒光用分光元件和檢測器進行分光,檢測; 計數系統:統計,測量由檢測器測出的信號,同時也可以除去過強的信號和干
X射線熒光儀器的分類介紹
X射線熒光儀器根據能量分辨的原理不同,可分為波長色散型、能量色散X射線型和非色散型。一臺典型的X射線熒光(XRF)儀器由激發源(X射線管)和探測系統構成。X射線管作為激發源,產生入射X射線(一次X射線)用于激發被測樣品,受激發的樣品中的每一種元素都會放射出二次X射線。由于不同的元素所放射出的二次
X射線熒光儀器的歷史介紹
X射線熒光儀器是指波長為0.01~10nm的電磁波,1895年倫琴(W. C. Roentgen)在使用放電管工作時發現了X射線,因為這一個重大發現,倫琴于1901年獲得了諾貝爾獎。1913年莫斯萊(H. G. Moseley)建立了X射線波長與原子序數的關系,奠定了X射線熒光光譜分析的基礎,第
X射線熒光儀器的基本介紹
X射線熒光儀器(X Ray Fluorescence,XRF)又稱為X射線熒光光譜法,是確定物質中微量元素的種類和含量的一種方法。它是指根據原子在原級X射線或粒子的激發下發射出的次級的特征X射線(X射線熒光)的波長和長度,對元素進行定性和定量的分析方法。
X射線熒光分析的介紹
X射線熒光分析是確定物質中微量元素的種類和含量的一種方法,又稱X射線次級發射光譜分析,是利用原級X射線光子或其它微觀粒子激發待測物質中的原子,使之產生次級的特征X射線(X光熒光)而進行物質成分分析和化學態研究。 1948年由H.費里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir
X射線熒光儀器分析誤差的來源
X射線光譜分析儀的好壞常常是以X射線強度測量的理論統計誤差來表示的,BX系列波長色散X射線熒光儀的穩定性和再現性,已足以保證待測樣品分析測量的精度,被分析樣品的制樣技術成為影響分析準確度的至關重要的因素,在樣品制備方面所花的工夫將會反映在分析結果的質量上。X射線熒光儀器分析誤差的來源主要有以下幾
X射線熒光分析技術介紹
X射線熒光分析技術(XRF)作為常規、快速的分析手段,開始于20世紀50年代初,經歷了50多年的不斷發展,現在已成為物質組成分析的必備方法之一。 在我國的相關生產企業的檢測、篩選和控制有害元素含量中,X射線熒光分析技術的應用氣相液相色譜儀提供了一種可行的、低成本的、并且是及時的有效途徑;與其
X射線熒光儀器的技術優點介紹
利用XRF,元素周期表中絕大部分元素均可測量。作為一種分析手段,XRF具有其優越的地方:分析速度快、非破壞分析、分析精密度高、制樣簡單等。波長色散和能量色散XRF光譜儀對元素的檢測范圍為10-5%~100%,對水樣的分析可達10-9數量級;全反射XRF的檢測限已達到10-9~10-12g。同時也
X射線熒光分析的相關介紹
確定物質中微量元素的種類和含量的一種方法。它用外界輻射激發待分析樣品中的原子,使原子發出標識X射線(熒光),通過測量這些標識X射線的能量和強度來確定物質中微量元素的種類和含量。根據激發源的不同,可分成帶電粒子激發X熒光分析,電磁輻射激發X熒光分析和電子激發X熒光分析。
X射線熒光分析的特點介紹
1.分析速度快,通常每個元素分析測量時間在2~lOOs之內即可完成。 2.非破壞性,X射線熒光分析對樣品是非破壞性測定,使得其在一些特殊測試如考古、文物等貴重物品的測試中獨顯優勢 3.分析樣品范圍廣,可以對元素周期表上的多種元素進行分析,并可直接測試各種形態的樣品。 4.分析樣品濃度范圍寬
X射線熒光分析的基本介紹
X射線熒光分析是確定物質中微量元素的種類和含量的一種方法,又稱X射線次級發射光譜分析,是利用原級X射線光子或其它微觀粒子激發待測物質中的原子,使之產生次級的特征X射線(X光熒光)而進行物質成分分析和化學態研究。 1948年由H.費里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir
X射線熒光的簡介和相關儀器介紹
通常把X射線照射在物質上而產生的次級X射線叫做X射線熒光(X-Ray Fluorescence),而把用來照射的X射線稱為原級X射線,所以X射線熒光光譜儀仍然屬于X射線范疇。一臺典型的X射線熒光光譜儀主要由激發源(X射線管)和探測系統構成。X射線管主要負責產生入射X射線(一次X射線),隨后該射線
X射線熒光分析技術相關介紹
X光熒光分析又稱X射線熒光分析(XRF)技術,即是利用初級X射線光子或其他微觀粒子激發待測樣品中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學形態研究的方法。 X射線是一種電磁輻射,按傳統的說法,其波長介于紫外線和γ射線之間,但隨著高能電子加速器的發展,電子軔致輻射所產生的X射線的
質子激發X射線熒光分析的實驗裝置
質子X 射線熒光分析的主要實驗裝置包括: ①加速器,一般用質子靜電加速器,選用能量為1~3 兆電子伏的質子,在此能量范圍內,質子激發X射線的產額高,靈敏度高;質子的能量再高時,將會引起許多核反應,使本底增大;能量再低時,質子的穿透能力下降,只能用于表面分析。②靶室(或稱散射室),是分析樣品放置
X射線熒光分析技術的相關介紹
X射線熒光分析是確定物質中微量元素的種類和含量的一種方法。 X射線熒光分析又稱X射線次級發射光譜分析。本法系利用原級X射線光子或其它微觀粒子激發待測物質中的原子,使之產生次級的特征X射線(X光熒光)而進行物質成分分析和化學態研究的方法。1948年由H.費里德曼(H.Friedmann)和L.S
X射線熒光分析技術的特點介紹
1.分析速度快,通常每個元素分析測量時間在2~lOOs之內即可完成。 2.非破壞性,X射線熒光分析對樣品是非破壞性測定,使得其在一些特殊測試如考古、文物等貴重物品的測試中獨顯優勢 3.分析樣品范圍廣,可以對元素周期表上的多種元素進行分析,并可直接測試各種形態的樣品。 4.分析樣品濃度范圍寬
X射線熒光分析技術的應用介紹
隨著儀器技術和理論方法的發展,X射線熒光分析法的應用范同越來越廣。在物質的成分分析上,在冶金、地質、化工、機械、石油、建筑材料等工業部門,農業和醫藥衛生,以及物理、化學、生物、地學、環境、天文及考古等研究部門都得到了廣泛的應用:有效地用于測定薄膜的厚度和組成.如冶金鍍層或金屬薄片的厚度,金屬腐蝕
X射線熒光分析儀的介紹
X射線熒光分析儀主要由激發、色散(波長和能量色散)、探測、記錄和測量以及數據處理等部分組成。X射線光譜儀與X射線能譜儀兩類分析儀器有其相似之處,但在色散和探測方法上卻完全不同。在激發源和測量裝置的要求上,兩類儀器也有顯著的區別。X射線熒光分析儀按其性能和應用范圍,可分為實驗室用的X射線熒光光譜儀
X射線熒光分析方法的優點介紹
①分析的元素范圍廣,除少數輕元素外,周期表中幾乎其他所有的元素都能進行分析。隨著儀器的改進,分析元素已經擴展到F,O,C等輕元素。 ②熒光X射線譜簡單,譜線干擾少,對于化學性質極其相似的元素,如稀土、鋯鉿、鉑系等,不需經過復雜的分離,就能成功地完成分析工作。 ③分析的濃度范圍較寬,從常量組分
關于X射線熒光分析的分類介紹
1、根據分光方式的不同,X射線熒光分析可分為能量色散和波長色散兩類,也就是通常所說的能譜儀和波譜儀,縮寫為EDXRF和WDXRF。 通過測定熒光X射線的能量實現對被測樣品的分析的方式稱之為能量色散X射線熒光分析,相應的儀器稱之為能譜儀,通過測定熒光X射線的波長實現對被測樣品分析的方式稱之為波長
質子激發X射線熒光分析的X-射線譜
在質子X 射線熒光分析中所測得的X 射線譜是由連續本底譜和特征X 射線譜合成的疊加譜。樣品中一般含有多種元素,各元素都發射一組特征X 射線譜,能量相同或相近的譜峰疊加在一起,直觀辨認譜峰相當困難,需要通過復雜的數學處理來分解X 射線譜。解譜包括本底的扣除、譜的平滑處理、找峰和定峰位、求峰的半高寬
X射線熒光分析固體樣品的制備介紹
固體樣品包括粉末樣品、固體金屬和非金屬樣品、固體塊狀樣品。對于固體樣品,可以采取將其制成溶液后按液體樣品方式測定的方法,也可以直接以固體形態進行測定。而對于金屬樣品一般直接取樣分析。 粉末樣品制樣方式比較多,通常采取壓片法和熔融法。兩者各有優缺點,壓片法操作簡便快捷但是干擾嚴重,測量精密度和準
X射線熒光分析技術簡介
X光熒光分析又稱X射線熒光分析(XRF)技術,即是利用初級x射線光子或其他微觀粒子激發待測樣品中的原子,使之產生熒光(次級x射線)而進行物質成分分析和化學形態研究的方法。
X射線熒光應用及分析
a) X射線用于元素分析,是一種新的分析技術,但在經過二十多年的探索以后,現在已完全成熟,已成為一種廣泛應用于冶金、地質、有色、建材、商檢、環保、衛生等各個領域。 b) 每個元素的特征X射線的強度除與激發源的能量和強度有關外,還與這種元素在樣品中的含量。 c) 根據各元素的特征X射線的強度,
X射線熒光分析法
原子發射與原子吸收光譜法是利用原子的價電子激發產生的特征光譜及其強度進行分析。?X-?射線熒光分析法則是利用原子內層電子的躍遷來進行分析。?X?射線是倫琴于?1895?年發現的一種電磁輻射,其波長為?0.01?~?10nm。在真空管內用電加熱燈絲(鎢絲陰極)產生大量熱電子,熱電子被高壓(萬伏)加速撞
X射線熒光應用及分析
a) X射線用于元素分析,是一種新的分析技術,但在經過二十多年的探索以后,現在已完全成熟,已成為一種廣泛應用于冶金、地質、有色、建材、商檢、環保、衛生等各個領域。b) 每個元素的特征X射線的強度除與激發源的能量和強度有關外,還與這種元素在樣品中的含量。c) 根據各元素的特征X射線的強度,也可以獲得各
X射線熒光應用及分析
a)?X射線用于元素分析,是一種新的分析技術,但在經過二十多年的探索以后,現在已完全成熟,已成為一種廣泛應用于冶金、地質、有色、建材、商檢、環保、衛生等各個領域。? ??b)?每個元素的特征X射線的強度除與激發源的能量和強度有關外,還與這種元素在樣品中的含量。????c)?根據各元素的特征X射線的強
X射線熒光分析技術分類
X射線熒光分析技術可以分為兩大類型:波長色散X射線熒光分析(WDXRF)和能量色散X射線熒光分析(EDXRF);而能量色散型又根據探測器的類型分為(Si-PIN)型和SDD型。在不同的應用條件下,這幾種類型的技術各有其突出的特點。目前,X射線熒光分析不僅材料科學、生命科學、環境科學等普遍采用的一
簡述-X-射線熒光分析技術
X 射線熒光分析技術(XRF)作為一種快速分析手段,為我國的相關部門提供了一種可行的、低成本的并且及時的檢測、篩選和控制有害元素含量的有效途徑。相對于其他分析方法(例如發射光譜、吸收光譜、分光光度計、色譜質譜等),XRF 具有無需對樣品進行特別的化學處理,快速、方便、測量成本低等明顯優勢,特別適