• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>

  • 如何選擇小動物活體熒光成像系統

    小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤成像,既可以提高數據的可比性,避免個體差異對試驗結果的影響;又可以了解標記物在動物體內的分布和代謝情況,避免傳統體外實驗方法的諸多缺點;特別是還可以用原生態的方法來研究問題,即研究對象不需要先行標記,其后用熒光標記物來研究其行為,觀察結果真實可靠。那如何選擇自己最合適的活體熒光成像系統呢?本文試從以下幾點來進行分析。1、 熒光標記的選擇活體熒光成像技術主要有三種標記方法:熒光蛋白標記、熒光染料標記和量子點標記。熒光蛋白適用于標記腫瘤細胞、病毒、基因等。通常使用的是GFP、EGFP、RFP(DsRed)等。熒光染料標記和體外標記方法相同......閱讀全文

    如何選擇小動物活體熒光成像系統

    小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤

    如何選擇小動物活體熒光成像系統

    小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤

    如何選擇小動物活體熒光成像系統

    小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤

    如何選擇小動物活體熒光成像系統

    小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤

    如何選擇小動物活體熒光成像系統

    小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤

    如何選擇小動物活體熒光成像系統

    小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤

    如何選擇小動物活體熒光成像系統?

    ? 小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。 ??? 與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個

    小動物活體成像系統怎么選擇

    小動物活體成像技術有很多,大概分為兩大類:一類是用來獲取解剖學結構信息的技術,可以獲得物理結構,骨胳、器官位置大小等,比如說CT,核磁MRI,或者是超聲;另一類是功能學成像技術,是用來獲取功能學信息的,比如說細胞功能,bio-marker功能,器官功能等等,目前最常用的功能學技術包括光學成像,使用放

    小動物活體成像系統怎么選擇

    小動物活體成像技術有很多,大概分為兩大類:一類是用來獲取解剖學結構信息的技術,可以獲得物理結構,骨胳、器官位置大小等,比如說CT,核磁MRI,或者是超聲;另一類是功能學成像技術,是用來獲取功能學信息的,比如說細胞功能,bio-marker功能,器官功能等等,目前最常用的功能學技術包括光學成像,使用放

    小動物活體成像系統比較

    分子影像產品的研究與發展,是伴隨著分子影像成像理論和成像算法的發展而逐步發展的。在熒光標記的分子成像方面,目前世界上僅有少數實驗室研制成功可以對小動物進行跟蹤性在體熒光斷層分子影像的系統,并接連在Nature/Science上發表一系列突破性研究進展。  近年來,國外某些公司改進了現有的體外熒光成像

    小動物活體成像

    小動物活體成像 ? 主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。利用一套非常靈敏的光學檢測儀器,

    小動物活體成像

    小動物活體成像主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。利用一套非常靈敏的光學檢測儀器,讓研究人員能夠直

    活體GFP綠色熒光成像系統

    ? 系統提供動物活體綠色熒光蛋白的實時觀察與成像等一系列的熒光檢測。能夠應用在像深度腫瘤,大動物等活體腫瘤追蹤觀察成像研究。??? 該設備是一個高靈敏度的圖像成像工作系統,主要利用特定波長的激光進行激發后,通過高靈敏度的致冷CCD進行實時檢測后,獲得所需的各類 特性的圖像,有利于進一步的分析作用?。

    活體熒光成像系統介紹(一)

    一、 ?技術簡介活體生物熒光成像技術(in vivo bioluminescence imaging)是近年來發展起來的一項分子、基因表達的分析檢測系統。它由敏感的CCD及其分析軟件和作為報告子的熒光素酶(luciferase)以及熒光素(luciferin)組成。利用靈敏的檢測方法,讓研究人員

    活體熒光成像系統介紹(二)

    五、生產廠家1.美國KODAKImage Station In-Vivo FX多功能活體成像系統1.1簡介:該系統采用了Kodak公司科研級的超高靈敏度4百萬象素冷CCD,高安全標準的X-光模塊,以及ZL的放射性同位素磷屏等技術,實現了化學發光、全波長范圍熒光、放射性同位素以及X-光等的多功能檢測功

    小動物活體成像原理

    體動物體內光學成像主要采用生物發光與熒光兩種技術。生物發光是用熒光素酶基因(Luciferase)標記細胞或 DNA,而熒光技術則采用綠色熒光蛋白、紅色熒光蛋白等熒光報告基因和 FITC、Cy5、Cy7 等熒光素及量子點 (quantumdot,QD) 進行標記。小動物活體成像技術是采用高靈敏度制冷

    小動物活體成像技術

    1、背景和原理1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事件。

    小動物活體成像原理

    體動物體內光學成像主要采用生物發光與熒光兩種技術。生物發光是用熒光素酶基因(Luciferase)標記細胞或 DNA,而熒光技術則采用綠色熒光蛋白、紅色熒光蛋白等熒光報告基因和 FITC、Cy5、Cy7 等熒光素及量子點 (quantumdot,QD) 進行標記。小動物活體成像技術是采用高靈敏度制冷

    活體成像中熒光染料的選擇與成像

    Cy5.5(Ex/Em:678/701 nm)和Cy7(Ex/Em:749/776 nm)是對分子標記的最優選擇之一;DiD(Ex/Em:644/663 nm)、DiR(Ex/Em:748/780)染料則常用于活體成像實驗中對細胞進行標記。??一、Cy5.5 、Cy7 Cy5.5 、Cy7避開了可見

    MARS-近紅外二區小動物活體成像系統

      品牌/產地:恒光智影/中國。  型號:MARS。  MARS近紅外二區小動物活體成像系統采用頂級科研Teledyne Princeton Instruments牌InGaAs相機,其出色的量子效率與先進的噪聲抑制技術為高品質成像提供保證。  產品概述:  MARS近紅外二區小動物活體成像系統突破

    活體生物發光成像系統CCD選擇指南

    近年來興起的活體生物發光成像技術隨著背部薄化、背照射冷CCD技術的產生而產生,并隨著該CCD技術的發展而發展。由于具有更高量子效率CCD的問世,使活體生物發光技術具有更高的靈敏度,可以方便的應用到腫瘤學、基因表達和藥物開發等各方面。從市場分析的角度,xenogen公司首先利用了先進的CCD技術來檢測

    活體生物發光成像系統CCD選擇指南

    近年來興起的活體生物發光成像技術隨著背部薄化、背照射冷CCD技術的產生而產生,并隨著該CCD技術的發展而發展。由于具有更高量子效率CCD的問世,使活體生物發光技術具有更高的靈敏度,可以方便的應用到腫瘤學、基因表達和藥物開發等各方面。從市場分析的角度,xenogen公司首先利用了先進的CCD技術來檢測

    小動物活體成像技術概覽(四)

    成像設備主要應用領域優點缺點PET報告基因表達,小分子示蹤高靈敏性,同位素自然替代靶分子,可進行定量移動研究需要回旋加速器或發生器,相對低的空間分辨率,輻射損害,價格昂貴SPECT報告基因表達,小分子示蹤同時使用多種分子探針,能同時成像,適于用作臨床成像系統相對較低的空間分辨率,輻射損害生物體之發光

    小動物活體成像技術概覽(三)

    2-4超聲成像此外,超聲分子影像學是近幾年超聲醫學在分子影像學方面的研究熱點。它是利用超聲微泡造影劑介導來發現疾病早期在細胞和分子水平的變化,有利于人們更早、更準確地診斷疾病。通過此種方式也可以在患病早期進行基因治療、藥物治療等,以期在根本上治愈疾病。2-5CT成像CT成像是利用組織的密度不同造成對

    小動物活體成像技術概覽(一)

    1. 背景和原理:1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事

    小動物活體成像技術概覽(二)

    光在哺乳動物組織內傳播時會被散射和吸收,光子遇到細胞膜和細胞質時會發生折射現象,而且不同類型的細胞和組織吸收光子的特性并不一樣。在偏紅光區域, 大量的光可以穿過組織和皮膚而被檢測到。利用靈敏的活體成像系統最少可以看到皮下的500個細胞,當然,由于發光源在老鼠體內深度的不同可看到的最少細胞數是不同

    如何選擇凝膠成像系統?

    如今,凝膠成像分析系統已經不僅僅是一種凝膠記下的手段,普遍應用于蛋白、DNA的凝膠記下中了,更是一種印跡分析,數據獲得的方式。要挑選一個合適的凝膠成像系統,各人要求根據目前的預算和未來研究要求來決定,市場上有眾多的類型和型號可供選用,但是大家要務必記住經常留意最新的產品動向――快速發展的光學技術和成

    美國-PHOTOMETRICS-活體化學發光和熒光成像系統

      美國 PHOTOMETRICS 活體化學發光和熒光成像系統   隨著分子生物學、分子診斷學、基因治療等學科的發展,“綜合形態分析”的概念和應用被逐漸突顯出來。研究人員迫切希望,能有一種研究方法和工具,使得他們能夠直接捕捉整體動物、植物或微生物的形態變化:對動物、植物或微生物的目的細胞、目的組織

    美國-PHOTOMETRICS-活體化學發光和熒光成像系統

      美國 PHOTOMETRICS 活體化學發光和熒光成像系統   隨著分子生物學、分子診斷學、基因治療等學科的發展,“綜合形態分析”的概念和應用被逐漸突顯出來。研究人員迫切希望,能有一種研究方法和工具,使得他們能夠直接捕捉整體動物、植物或微生物的形態變化:對動物、植物或微生物的目的細胞、目的組

    小動物活體成像技術的應用領域

    癌癥與抗癌藥物研究 ,免疫學與干細胞研究 ,細胞凋零 ,病理機制及病毒研究 ,基因表達和蛋白質之間相互作用 ,轉基因動物模型構建 ,藥效評估 ,藥物甄選與預臨床檢驗 ,藥物配方與劑量管理 ,腫瘤學應用 ,生物光子學檢測 ,食品監督與環境監督等。

    人体艺术视频