X射線熒光光譜和熒光光譜區別
一、理論上。熒光光譜是比較寬的概念,包括了X射線熒光光譜。二、從儀器分析上,熒光光譜分析可以分為:X射線熒光光譜分析、原子熒光光譜分析,1)X射線熒光光譜分析——發射源是Rh靶X光管2)原子熒光光譜分析——可用連續光源或銳線光源。常用的連續光源是氙弧燈,常用的銳線光源是高強度空心陰極燈、無極放電燈、激光等。......閱讀全文
X射線熒光光譜法的簡介
X射線熒光光譜法正是基于以上物理學原理而產生的,從X射線管產生X射線,X射線經過濾或單色化處理入射樣品,入射樣品X射線與物質相互作用,產生的元素特征X射線熒光,進入探測器記錄其強度,能量色散型探測器的各種效應。都有可以遵循的X射線熒光的物理學理論,而這些明確的物理學理論,有大量的規律可循,進而可
x射線熒光光譜儀安全事項
在分析過程中,給管通電后,分析儀會發射定向輻射束。應盡合理的努力使放射線的暴露量保持在實際可行的劑量限度以下。這就是所謂的ALARA(最低合理可行)原則。三個因素將有助于最大程度地減少您的輻射暴露:時間,距離和屏蔽。 盡管便攜式x射線熒光光譜儀或手持式x射線熒光光譜儀元素分析儀發出的輻射與普通
X射線熒光光譜法的分析
X射線熒光光譜法---能量色散 利用初級X射線光子或其他微觀離子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學態研究的方法。按激發、色散和探測方法的不同,分為X射線光譜法(波長色散)和X射線能譜法(能量色散)。 當原子受到X射線光子(原級X射線)或其他微觀粒子的激發
X射線熒光光譜法的應用
質成分分析 ①定性和半定量分析具有譜線簡單、不破壞樣品、基體的吸收和增強效應較易克服、操作簡便、測定迅速等優點,較適合于作野外和現場分析,而且一般使用便攜式X射線熒光分析儀,即可達到目的。如在室內使用X射線能譜儀,則可一次在熒光屏上顯示出全譜,對物質的主次成分一目了然,有其獨到之處。 ② 定量
X射線熒光光譜法的優點
X射線熒光光譜法-----原級X射線發射光譜法 首先,與原級X射線發射光譜法比,不存在連續X射線光譜,以散射線為主構成的本底強度小,譜峰與本底的對比度和分析靈敏度顯著提高,操作簡便,適合于多種類型的固態和液態物質的測定,并易于實現分析過程的自動化。樣品在激發過程中不受破壞,強度測量的再現性好,
X射線熒光光譜法的展望
X射線熒光光譜法 X射線熒光光譜法同其他分析技術一樣,不是完美無缺的。在物質成分分析中,它對一些最輕元素(Z≤8)的測定還不完全成熟,只能是屬于初期應用的階段。常規分析中某些元素的測定靈敏度不如原子發射光譜法高(采用同步輻射和質子激發的 X射線熒光分析除外),根據各個工業部門生產自動化的要求(
能量色散X射線熒光光譜技術
能量色散X射線熒光光譜采用脈沖高度分析器將不同能量的脈沖分開并測量。能量色散X射線熒光光譜儀可分為具有高分辨率的光譜儀,分辨率較低的便攜式光譜儀,和介于兩者之間的臺式光譜儀。高分辨率光譜儀通常采用液氮冷卻的半導體探測器,如Si(Li)和高純鍺探測器等。低分辨便攜式光譜儀常常采用正比計數器或閃爍計
X射線熒光光譜儀的概述
自1895年倫琴發現X射線以來,X射線及相關技術的研究和應用取得了豐碩成果。其中,1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎;20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段;60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅
X射線熒光光譜法的定義
X射線熒光光譜法是照射原子核的X射線能量與原子核的內層電子的能量在同一數量級時,核的內層電子共振吸收射線的輻射能量后發生躍遷,而在內層電子軌道上留下一個空穴,處于高能態的外層電子跳回低能態的空穴,將過剩的能量以X射線的形式放出,所產生的X射線即為代表各元素特征的X射線熒光譜線。其能量等于原子內殼層電
X射線熒光光譜儀原理分析
X熒光光譜儀(XRF)由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后,儀器軟件將探測系統所收集
X射線熒光光譜儀制樣要求
X射線熒光光譜儀制樣要求:? 樣品的尺寸(直徑x高)50x 40mm,重量400g。? 1、定量分析? 定量分析是對樣品中元素進行準確定量測定。定量分析需要一組標準樣品做參考。常規定量分析一般需要5個以上的標準樣品才能建立較可靠的工作曲線。? 常規X射線熒光光譜定量分析對標準樣品的基本要求:
X射線熒光光譜儀的原理
X射線熒光的物理原理:當材料暴露在短波長X光檢查,或伽馬射線,其組成原子可能發生電離,如果原子是暴露于輻射與能源大于它的電離勢,足以驅逐內層軌道的電子,然而這使原子的電子結構不穩定,在外軌道的電子會“回補”進入低軌道,以填補遺留下來的洞。在“回補”的過程會釋出多余的能源,光子能量是相等兩個軌道的能量
X射線熒光光譜儀-檢測標準
JJG810-1993《波長色散X射線熒光光譜儀》檢定周期為1年。
X射線熒光光譜分析(-XRF)
XRF:X射線熒光光譜分析(X Ray Fluorescence) 的X射線是電磁波譜中的某特定波長范圍內的電磁波,其特性通常用能量(單位:千電子伏特,keV)和波長(單位:nm)描述。X射線熒光是原子內產生變化所致的現象。一個穩定的原子結構由原子核及核外電子組成。其核外電子都以各自特有的能量在各自
X射線熒光光譜儀的原理
X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水
什么是X射線熒光光譜儀
X射線是一種電磁輻射,其波長介于紫外線和γ射線之間。它的波長沒有一個嚴格的界限,一般來說是指波長為0.001-50nm的電磁輻射。對分析化學家來說,感興趣的波段是0.01-24nm,0.01nm左右是超鈾元素的K系譜線,24nm則是輕元素Li的K系譜線。1923年赫維西(Hevesy,G.Von)提
x射線熒光光譜儀安全事項
在分析過程中,給管通電后,分析儀會發射定向輻射束。應盡合理的努力使放射線的暴露量保持在實際可行的劑量限度以下。這就是所謂的ALARA(最低合理可行)原則。三個因素將有助于最大程度地減少您的輻射暴露:時間,距離和屏蔽。 盡管便攜式x射線熒光光譜儀或手持式x射線熒光光譜儀元素分析儀發出的輻射與普通
X射線熒光光譜儀光譜室的故障分析
光譜室最常見的漏氣部位是流氣計數器,流氣計數器安裝在光譜室內,有一根入氣管和一根出氣管與外界相通,流氣計數器的窗膜很薄,窗膜漏氣,就會影響光譜室真空。檢查方法:將入氣管和出氣管用一根軟管連接,使流氣計數器與外界隔絕,然后抽真空。 檢查真空故障,在拆卸和安裝時,要小心操作,不要讓灰或頭發掉到密封圈
熒光激發光譜和熒光發射光譜的區別
熒光激發光譜:讓不同波長的激發光激發熒光物質使之發生熒光,而讓熒光以固定的發射波長照射到檢測器上,然后以激發光波長為橫坐標,以熒光強度為縱坐標所繪制的圖,即為熒光激發光譜。熒光發射光譜的形狀與激發光的波長無關。熒光發射光譜:使激發光的波長和強度保持不變,而讓熒光物質所發出的熒光通過發射單色器照射于檢
熒光激發光譜和熒光發射光譜的區別
熒光激發光譜:讓不同波長的激發光激發熒光物質使之發生熒光,而讓熒光以固定的發射波長照射到檢測器上,然后以激發光波長為橫坐標,以熒光強度為縱坐標所繪制的圖,即為熒光激發光譜。熒光發射光譜的形狀與激發光的波長無關。熒光發射光譜:使激發光的波長和強度保持不變,而讓熒光物質所發出的熒光通過發射單色器照射于檢
熒光激發光譜和熒光發射光譜的區別
熒光激發光譜:讓不同波長的激發光激發熒光物質使之發生熒光,而讓熒光以固定的發射波長照射到檢測器上,然后以激發光波長為橫坐標,以熒光強度為縱坐標所繪制的圖,即為熒光激發光譜。熒光發射光譜的形狀與激發光的波長無關。熒光發射光譜:使激發光的波長和強度保持不變,而讓熒光物質所發出的熒光通過發射單色器照射于檢
熒光激發光譜和熒光發射光譜的區別
熒光激發光譜:讓不同波長的激發光激發熒光物質使之發生熒光,而讓熒光以固定的發射波長照射到檢測器上,然后以激發光波長為橫坐標,以熒光強度為縱坐標所繪制的圖,即為熒光激發光譜。熒光發射光譜的形狀與激發光的波長無關。熒光發射光譜:使激發光的波長和強度保持不變,而讓熒光物質所發出的熒光通過發射單色器照射于檢
熒光激發光譜和熒光發射光譜的區別
熒光激發光譜:讓不同波長的激發光激發熒光物質使之發生熒光,而讓熒光以固定的發射波長照射到檢測器上,然后以激發光波長為橫坐標,以熒光強度為縱坐標所繪制的圖,即為熒光激發光譜。熒光發射光譜的形狀與激發光的波長無關。熒光發射光譜:使激發光的波長和強度保持不變,而讓熒光物質所發出的熒光通過發射單色器照射于檢
X射線熒光光譜儀光譜室和樣品室的故障分析
X射線熒光光譜分析通常在真空光路條件下工作,但光譜室和樣品室有很多部位與外部相連,可能漏氣的部位很多。檢查真空故障時,將可能出問題的地方人為分隔為三部分:真空泵、樣品室、光譜室,對這三部分逐一檢查以縮小范圍。 1、真空泵 將真空泵與光譜室和樣品室的接口拆下并用橡皮塞堵住,然后抽真空,如果能在
原子熒光光度計與X射線熒光光譜儀的區別
有一些人把原子熒光光度計與X射線熒光光譜儀誤認為是同一種儀器,其實它們是有區別的。首先我們分別了解下它們的定義。 1、原子熒光光度計是利用硼氫化鉀或硼氫化鈉作為還原劑,將樣品溶液中的待分析元素還原為揮發性共價氣態氫化物(或原子蒸汽),然后借助載氣將其導入原子化器,在氬—氫火焰中原子化而形成
偏振X射線熒光光譜儀的應用和分析
? 它分析專業、檢出下限低,靈敏度高、穩定性好,還能應對歐洲WEEE、RoHS指令以及SONY STM-0083標準。?? SPECTRO XEPOS多功能偏振型X射線熒光光譜儀應用廣泛,應用于石油、化工、冶金、礦業、制藥、食品、環保、地質、建材、廢物處理以及再加工工業等。以油中各種元素的分析為例,
簡述X射線熒光光譜儀的組成和用途
X射線管產生入射X射線(一次X射線),激發被測樣品。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后,儀器軟件將探測系統所收集到的信息轉換成樣品中各種元素的種類及含量。 組成:X
X射線熒光光譜儀的構造和測試步驟
X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水平,分析時間短。? X射線熒光光譜儀的構
X射線熒光光譜儀的原理和應用介紹
X射線熒光光譜儀(X-ray Fluorescence Spectrometer,簡稱:XRF光譜儀),是一種快速的、非破壞式的物質測量方法。X射線熒光(X-ray fluorescence,XRF)是用高能量X射線或伽瑪射線轟擊材料時激發出的次級X射線。這種現象被廣泛用于元素分析和化學分析,特別是
X射線熒光光譜儀X射線防護系統的故障分析
為了防止X射線泄漏,高壓發生器只有在射線防護系統正常的情況下才能啟動。射線防護系統正常與否,主要檢查以下二部分: 1、面板的位置是否正常。X射線熒光光譜儀是一個封閉系統,面板是最外層的射線防護裝置,如果有一塊面板不到位,儀器就有射線泄漏的可能。因此,每塊面板上都有位置接觸傳感器,面板沒有完全合