• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>

  • 波譜分析之紫外可見光譜

    四譜 四譜是現代波譜分析中最主要也是最重要的四種基本分析方法。四譜的發展直接決定了現代波譜的發展。在經歷了漫長的發展之后四譜的發展以及應用已漸成熟,也使波譜分析在化學分析中有了舉足輕重的地位。 紫外-可見光譜 20世紀30年代,光電效應應用于光強度的控制產生第一臺分光光度計并由于單色器材料的改進,是這種古老的分析方法由可見光區擴展到紫外光區和紅外光區。紫外光譜具有靈敏度和準確度高,應用廣泛,對大部分有機物和很多金屬及非金屬及其化合物都能進行定性、定量分析,且儀器的價格便宜,操作簡單、快速,易于普及推廣,所以至今它仍是有機化合物結構鑒定的重要工具。近年來,由于采用了先進的分光、檢測及計算機技術,使儀器的性能得到極大的提高,加上各種方法的不斷創新與改善,使紫外光譜法成為含發色團化合物的結構鑒定、定性和定量分析不可或缺的方法之一。......閱讀全文

    波譜分析之紫外可見光譜

      四譜  四譜是現代波譜分析中最主要也是最重要的四種基本分析方法。四譜的發展直接決定了現代波譜的發展。在經歷了漫長的發展之后四譜的發展以及應用已漸成熟,也使波譜分析在化學分析中有了舉足輕重的地位。   紫外-可見光譜  20世紀30年代,光電效應應用于光強度的控制產生第一臺分光光度計并由于單色器材

    波譜分析之紅外光譜簡介

      紅外光譜  1947年,第一臺實用的雙光束自動記錄的紅外分光光度計問世。這是一臺以棱鏡作為色散元件的第一代紅外分光光度計。到了20世紀60年代,用光柵代替棱鏡作為分光器的第二代紅外光譜儀投入實用,由于它分辨率高,測定波長的范圍寬,對周圍環境要求低,加上新技術的開發和應用,使紅外光譜的應用范圍擴大

    紫外可見吸收光譜的紫外光譜

    各種因素對吸收譜帶的影響表現為譜帶位移、譜帶強度的變化、譜帶精細結構的出現或消失等。譜帶位移包括藍移(或紫移,hypsochromic shift or blue shift))和紅移(bathochromic shift or red shift)。藍移(或紫移)指吸收峰向短波長移動,紅移指吸收峰

    紫外—可見吸收光譜分析方法

    4.3.1.1 定性分析無機元素的定性分析應用紫外—可見分光光度法比較少,主要采用原子發射光譜法或化學分析法。在有機化合物的定性分析鑒定及結構分析方面,由于紫外-可見吸收光譜較為簡單,光譜信息少,特征性不強,并且不少簡單官能團在近紫外光區及可見光區沒有吸收或吸收很弱,在應用時也有較大的局限性。但是,

    紫外—可見吸收光譜分析方法

    4.3.1.1 定性分析無機元素的定性分析應用紫外—可見分光光度法比較少,主要采用原子發射光譜法或化學分析法。在有機化合物的定性分析鑒定及結構分析方面,由于紫外-可見吸收光譜較為簡單,光譜信息少,特征性不強,并且不少簡單官能團在近紫外光區及可見光區沒有吸收或吸收很弱,在應用時也有較大的局限性。但是,

    紫外可見漫反射光譜數據怎么轉化為紫外可見吸收光譜

    如果你的樣品,沒有透射的話,那么直接用 1-R 去計算吸收就可以了

    紫外可見吸收光譜原理

    紫外可見吸收光譜原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π

    紫外可見吸收光譜原理

    紫外可見吸收光譜原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π

    紫外可見吸收光譜原理

    1. 紫外可見吸收光譜產生的原理紫外可見吸收光譜是由于分子(或離子)吸收紫外或者可見光(通常200-800 nm)后發生價電子的躍遷所引起的。由于電子間能級躍遷的同時總是伴隨著振動和轉動能級間的躍遷,因此紫外可見光譜呈現寬譜帶。紫外可見吸收光譜的橫坐標為波長(nm),縱坐標為吸光度。紫外可見吸收光譜

    波譜分析之核磁共振

      核磁共振  自1945年F.Bloch和E.M.Purcell為首的兩個研究小組同時獨立發現核磁共振現象以來,1H核磁共振在化學中的應用已有50年了。特別是近20年來,隨著超導磁體和脈沖傅里葉變換法的普及,核磁共振的新方法、新技術不斷涌現,如二維核磁共振技術、差譜技術、極化轉移技術及固體核磁共振

    紫外可見漫反射光譜怎么定量分析

    這是分析工作者需要考慮的問題。8。聲光可調濾光器是采用雙折射晶體,吸光度的準確性直接影響測定結果的準確性,不太適合于在線分析、雜散光雜散光定義為除要求的分析光外其它到達樣品和檢測器的光量總和.001~0、數據采樣間隔采樣間隔是指連續記錄的兩個光譜信號間的波長差,得到光譜的均方差,以其性能穩定,是指在

    紫外/可見吸收光譜測量

    荷蘭Avantes公司突破了傳統分光光度計采用轉動光柵進行光譜掃描的技術,使用2048像素CCD陣列探測器和平面衍射光柵,實現了不必轉動光柵而對整個光譜的快速測量,每秒可實現900幅光譜的超高速采樣,保證了測量的準確性和重復性,同時搭配浸入式光纖探頭或流通池進行取樣,從而適用于野外測量、應急檢測、在

    紫外/可見吸收光譜測量

    荷蘭Avantes公司突破了傳統分光光度計采用轉動光柵進行光譜掃描的技術,使用2048像素CCD陣列探測器和平面衍射光柵,實現了不必轉動光柵而對整個光譜的快速測量,每秒可實現900幅光譜的超高速采樣,保證了測量的準確性和重復性,同時搭配浸入式光纖探頭或流通池進行取樣,從而適用于野外測量、應急檢測、在

    紫外可見吸收光譜的性質

    1. 同一濃度的待測溶液對不同波長的光有不同的吸光度;2. 對于同一待測溶液,濃度愈大,吸光度也愈大;3. 對于同一物質,不論濃度大小如何,很大吸收峰所對應的波長(很大吸收波長 λmax) 相同,并且曲線的形狀也完全相同。

    紫外可見吸收光譜法

    分子的紫外-可見吸收光譜法是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析法。分子在紫外-可見區的吸收與其電子結構緊密相關。紫外光譜的研究對象大多是具有共軛雙鍵結構的分子。膽甾酮(a)與異亞丙基丙酮(b)分子結構差異很大,但兩者具有相似的紫外吸收峰。兩分子中相同的O=C-C=C共軛結構

    紫外—可見吸收光譜的產生

    4.1.1.1 分子光譜和電子光譜紫外—可見分光光度法是利用某些物質的分子對波長范圍在200~800nm的電磁波的吸收作用來進行分析測定的一種方法。分子的紫外—可見吸收光譜是由價電子能級的躍遷而產生的。分子,甚至是最簡單的雙原子分子的光譜,也要比原子光譜復雜得多。這是由于在分子中,除了電子相對于原子

    紫外可見吸收光譜的特征

    1. 吸收峰的形狀及所在位置——定性、定結構的依據2. 吸收峰的強度——定量的依據A = lg(1/T)=κCLT:透射率k:摩爾吸收系數,單位:L·cm?1·mol?1C:濃度L:光程長紫外可見光譜的兩個重要特征波峰:λmax, κ例:λmaxEt = 279 nm (κ=5012,logk=3.

    紫外—可見吸收光譜的產生

    4.1.1.1 分子光譜和電子光譜紫外—可見分光光度法是利用某些物質的分子對波長范圍在200~800nm的電磁波的吸收作用來進行分析測定的一種方法。分子的紫外—可見吸收光譜是由價電子能級的躍遷而產生的。分子,甚至是最簡單的雙原子分子的光譜,也要比原子光譜復雜得多。這是由于在分子中,除了電子相對于原子

    紫外可見光譜工作原理

      I 影響紫外可見吸收光譜的因素共軛效應:體系形成大π鍵,使各能級間的能量差減小,從而電子躍遷的能量也減小,因此共軛效應使吸收發生紅移。  溶劑效應:1.由于溶劑的存在使溶質溶劑發生相互作用,使精細結構消失。2.  對π→π*躍遷來講,溶劑極性增大時,吸收帶發生紅移;對于n→π*躍遷來講,吸收光譜

    波譜分析紫外最大吸收波長

    紫外光的波長范圍是10~380 nm,它分為兩個區段。波長在10~200 nm稱為遠紫外區,這種波長能夠被空氣中的氮、氧、二氧化碳和水所吸收,因此只能在真空中進行研究工作,故這個區域的吸收光譜稱真空紫外,由于技術要求很高,目前在有機化學中用途不大。波長在200~380 nm稱為近紫外區,一般的紫外光

    紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種

    紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種

    紫外/可見吸收光譜測量配件

    附件齊全 耐腐蝕型光纖探頭可用于在線測量,探頭末端浸入到液體中即可測量,光程可調(0.5-20mm)。不同光程的流通池:5mm、10mm和20mm;微型流通池(光程/容量):1.5 mm / 3 ul,10 mm / 18 ul;帶溫控的微型HPLC流通池,控溫范圍10-40°C ± 0.1

    紫外可見漫反射光譜是什么

    隨光譜技術的迅速發展,光學測量在表面表征中已占有非常重要的位置。由測量染料、顏料而發展起來的漫反射紫外可見光譜(DRUVS)是檢測非單晶材料的一種有效方法。在催化劑結構研究中,DRUVS已用于研究過渡金屬離子及其化合物結構、活性組分與載體間的相互作用。本文就二氧化碳加氫甲烷化催化刑(分別擔載Fe、C

    紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種

    紫外—可見—紅外光譜分區表

    紫外—可見—紅外光譜分區表?幾種波長單位的關系為:1μm = 1 micron = 10-4 cm-1 = 10000?1 nm = 10-7 cm =10-3μm1 ? =? 10-8 cm =10-9m名稱波長(μm)波長(nm)波數(cm-1)遠紅外(轉動區)25~100025000~1000

    紫外可見漫反射光譜是什么

    隨光譜技術的迅速發展,光學測量在表面表征中已占有非常重要的位置。由測量染料、顏料而發展起來的漫反射紫外可見光譜(DRUVS)是檢測非單晶材料的一種有效方法。在催化劑結構研究中,DRUVS已用于研究過渡金屬離子及其化合物結構、活性組分與載體間的相互作用。本文就二氧化碳加氫甲烷化催化刑(分別擔載Fe、C

    紫外可見光譜的峰面積

    峰面積的積分基本沒意義.只有峰有意義.UA本身就不是很精確的機子.其中A與C成正比

    紫外/可見吸收光譜測量特點

    主要特點:1.高性價比 廣泛應用于無機化學、生物化學、藥品分析、食品檢驗、環境保護、生命科學等領域。2.低雜散光、高穩定性 革命性優化設計的光學平臺,帶有兩個光闌和多個光陷阱,實現了0.04%的超低雜散光。新型的光學平臺在改善雜散光的同時,機械剛性也大大提高,使得光譜儀受微彎曲和溫度漂移的影響降低了

    紫外可見吸收光譜的產生原因

    紫外-可見吸收光譜的產生及基本原理2.1 物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發

    人体艺术视频