• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>

  • 超分辨率顯微鏡分析在熒光抗體篩選的應用

    1873年,德國醫師Ernst Abbe 提出了“衍射極限”的概念。他預測,由于光的基本衍射性質,光學顯微鏡無法實現200nm以下的分辨率。實際上,當兩個相隔很近的物點同時發光時,得到的圖像是模糊的,無法分辨。超分辨率顯微鏡(SRM)的誕生打破了一個世紀多以來一直被認為無法突破的瓶頸。 如今,科學家們已經研發了多種超分辨率技術,遠遠超出了衍射極限,能夠觀察到分子尺度的細節。SRM技術可以將細胞結構解析為亞細胞水平,從而獲取有關細胞組分的3D結構的信息,并可以觀察到單分子共定位。 下面我們來簡要概述了時下幾種最流行的SRM技術的原理: 1.受激發射耗竭(STED)顯微鏡 STED對于有經驗的熒光顯微鏡使用者來說相對簡單,該方法和普通共聚焦顯微鏡(Confocal)的原理相同。普通Confocal使用單光源,而STED使用雙光源。其中一個光源發射能激發熒光團——熒光標簽(研究者......閱讀全文

    超分辨率顯微鏡分析在熒光抗體篩選的應用

    1873年,德國醫師Ernst Abbe 提出了“衍射極限”的概念。他預測,由于光的基本衍射性質,光學顯微鏡無法實現200nm以下的分辨率。實際上,當兩個相隔很近的物點同時發光時,得到的圖像是模糊的,無法分辨。超分辨率顯微鏡(SRM)的誕生打破了一個世紀多以來一直被認為無法突破的瓶頸。?如今,科

    布魯克推出Vutara352超分辨率熒光顯微鏡

      分析測試百科網訊 2015年12月14日,布魯克在2015細胞生物學ASCB年會上推出首款用于定量分析的超分辨率熒光顯微鏡Vutara352。Vutara352不僅在速度、成像深度和分辨率等方面具有優勢,還加入了實時定量能力。這款產品擁有許多新功能,包括執行偶關聯、協同定位、群集分析、活細胞分析

    超分辨率熒光顯微技術的意義

    利用超高分辨率顯微鏡,可以讓科學家們在分子水平上對活體細胞進行研究,如觀察活細胞內生物大分子與細胞器微小結構以及細胞功能如何在分子水平表達及編碼,對于理解生命過程和疾病發生機理具有重要意義。

    高通量篩選平臺(HTS)在抗體藥物開發中的應用

    細胞株開發和培養基優化是生物藥物的開發的第一步,工業界一直致力于尋找一個高效快速的解決方案,我們將分兩期給大家介紹一下默克提供的解決方案。這一期將分享HTS技術。HTS全稱為高通量篩選(High Throughput Screen ),這里要劃一下重點:1)高通量,是指通過大量不同的培養基篩選,

    微柱凝膠技術在血小板抗體篩選中的應用

    血小板輸注對預防和治療因血小板減少或血小板功能缺陷引起的出血是一種有效的治療手段[12],血小板輸注還可降低腫瘤患者因放、化療后嚴重的骨髓抑制、血小板減少導致出血的病死率[3]。然而,多次輸注后血小板減少癥患者的血小板輸注無效 (PTR)的發生率可達30%~70%[4],其原因與反復輸注

    超分辨率熒光顯微技術的技術獲獎

    2014年10月8日,2014年度諾貝爾化學獎揭曉,美國科學家埃里克·白茲格、威廉姆·艾斯科·莫爾納爾和德國科學家斯特凡·W·赫爾三人獲得。官方稱,該獎是為表彰他們在超分辨率熒光顯微技術領域取得的成就 。

    計算超分辨圖像重建算法拓展熒光顯微鏡分辨率極限

      自2014年諾貝爾化學獎授予了超分辨顯微技術以來,超分辨成像技術取得了巨大的進步,成像的分辨率得到了進一步的提高。然而受限于熒光分子單位時間內發出的光子數,超分辨成像技術在時間分辨率和空間分辨率上難于獲得同等提高。  近日,發表在《Nature Biotechnology》上的一項題為“Spar

    計算超分辨圖像重建算法拓展熒光顯微鏡分辨率極限

      自2014年諾貝爾化學獎授予了超分辨顯微技術以來,超分辨成像技術取得了巨大的進步,成像的分辨率得到了進一步的提高。然而受限于熒光分子單位時間內發出的光子數,超分辨成像技術在時間分辨率和空間分辨率上難于獲得同等提高。  近日,發表在《Nature Biotechnology》上的一項題為“Spar

    微柱凝膠技術在血小板抗體篩選中的應用(一)

    ?????? 【摘要】 目的 探討微柱凝膠免疫分析技術(MGIA)在檢測血小板抗體中的應用價值。方法 采用微柱凝膠免疫分析技術分別對146例血液病患者(實驗組)和87例健康體檢者(對照組)進行血小板抗體檢測。結果 146例患者中檢出血小板抗體28例。11例輸注機采血小板少于3個治療量的血液病

    微柱凝膠技術在血小板抗體篩選中的應用(二)

    ?????? 由表1可見,87例健康體檢者未檢出血小板抗體。146例血液病患者中檢出血小板抗體陽性28例,陽性率為19.18%(28/146)。不同類型血液病中,以血小板減少性紫癜患者血小板抗體陽性率最高,骨髓瘤、淋巴瘤和骨髓增升異常綜合征患者血小板抗體陽性率最低。??? ?????? 2.2?

    熒光抗體技術的應用

      熒光抗體技術在臨床檢驗上已用作細菌、病毒和寄生蟲的檢驗及自身免疫病的診斷等。在細菌學檢驗中主要用于菌種的鑒定。標本材料可以是培養物、感染組織、病人分泌排泄物等。熒光間接染色法測定血清中的抗體,可用于流行病學調查和臨床回顧診斷。免疫熒光用于梅毒螺旋體抗體的檢測是梅毒特異性診斷常用方法之一。免疫熒光

    熒光抗體技術應用

    熒光抗體技術在臨床檢驗上已用作細菌、病毒和寄生蟲的檢驗及自身免疫病的診斷等。在細菌學檢驗中主要用于菌種的鑒定。標本材料可以是培養物、感染組織、病人分泌排泄物等。熒光間接染色法測定血清中的抗體,可用于流行病學調查和臨床回顧診斷。免疫熒光用于梅毒螺旋體抗體的檢測是梅毒特異性診斷常用方法之一。免疫熒光技術

    發明計算超分辨圖像重建算法拓展熒光顯微鏡分辨率極限

      自2014年諾貝爾化學獎授予了超分辨顯微技術以來,超分辨成像技術取得了巨大的進步,成像的分辨率得到了進一步的提高。然而受限于熒光分子單位時間內發出的光子數,超分辨成像技術在時間分辨率和空間分辨率上難于獲得同等提高。  近日,發表在《Nature Biotechnology》上的一項題為“Spar

    用普通共聚焦顯微鏡實現超分辨率單分子熒光成像

    傳統的細胞及其內部分子顯微觀察通常使用熒光染料,然后再用不同分辨率的顯微術照亮單個分子和與其互動的其他物質。如下圖所示,普通共聚焦顯微鏡和超分辨率顯微鏡的精準度差異一目了然。(普通共聚焦顯微鏡觀察圖,比例尺10μm。圖片來自發表文章DOI: 10.1038/s41467-017-00688-0)(隨

    在熒光顯微鏡中的不同的技術應用

    在熒光顯微鏡中的不同的技術熒光顯微鏡被廣泛使用,并提供了巨大的特異性。的各種技術使人們有可能以解決不同的問題,甚至規避,阿貝描述的衍射極限。可確定的分子物種的本地化與助染色的細胞器,如細胞骨架或膜。共聚焦激光掃描顯微鏡(CLSM),使得它可以觀察到在該樣本中沒有信號從外部的焦平面的區域,并允許光學切

    熒光抗體技術的應用特點

    熒光抗體技術在臨床檢驗上已用作細菌、病毒和寄生蟲的檢驗及自身免疫病的診斷等。在細菌學檢驗中主要用于菌種的鑒定。標本材料可以是培養物、感染組織、病人分泌排泄物等。熒光間接染色法測定血清中的抗體,可用于流行病學調查和臨床回顧診斷。免疫熒光用于梅毒螺旋體抗體的檢測是梅毒特異性診斷常用方法之一。免疫熒光技術

    熒光抗體技術的應用介紹

    熒光抗體技術在臨床檢驗上已用作細菌、病毒和寄生蟲的檢驗及自身免疫病的診斷等。在細菌學檢驗中主要用于菌種的鑒定。標本材料可以是培養物、感染組織、病人分泌排泄物等。熒光間接染色法測定血清中的抗體,可用于流行病學調查和臨床回顧診斷。免疫熒光用于梅毒螺旋體抗體的檢測是梅毒特異性診斷常用方法之一。免疫熒光技術

    熒光抗體技術的技術應用

    熒光抗體技術在臨床檢驗上已用作細菌、病毒和寄生蟲的檢驗及自身免疫病的診斷等。在細菌學檢驗中主要用于菌種的鑒定。標本材料可以是培養物、感染組織、病人分泌排泄物等。熒光間接染色法測定血清中的抗體,可用于流行病學調查和臨床回顧診斷。免疫熒光用于梅毒螺旋體抗體的檢測是梅毒特異性診斷常用方法之一。免疫熒光技術

    熒光抗體技術的應用介紹

    熒光抗體技術在臨床檢驗上已用作細菌、病毒和寄生蟲的檢驗及自身免疫病的診斷等。在細菌學檢驗中主要用于菌種的鑒定。標本材料可以是培養物、感染組織、病人分泌排泄物等。熒光間接染色法測定血清中的抗體,可用于流行病學調查和臨床回顧診斷。免疫熒光用于梅毒螺旋體抗體的檢測是梅毒特異性診斷常用方法之一。免疫熒光技術

    突破超分辨率顯微鏡極限:自對準顯微鏡

    超越了獲得諾貝爾獎的超分辨率顯微鏡的局限性的超精密顯微鏡將使科學家們直接測量單個分子之間的距離。新南威爾士大學的醫學研究人員在單分子顯微鏡中檢測完整細胞內單個分子之間的相互作用方面已實現了空前的解析能力。2014年諾貝爾化學獎因超分辨率熒光顯微鏡技術的發展而獲獎,該技術為顯微鏡專家提供了細胞內部的第

    超分辨率顯微鏡的各種不同技術對比

    對于傳統的光學顯微鏡,光的衍射讓成像分辨率限制在大約250 nm。如今,超分辨率技術可以將此提高10倍以上。這種技術主要通過三種方法實現:單分子定位顯微鏡,包括光敏定位顯微鏡(PALM)和隨機光學重建顯微鏡(STORM);結構照明顯微鏡(SIM);以及受激發射損耗顯微鏡(STED)。

    超分辨率顯微鏡的各種不同技術對比

    對于傳統的光學顯微鏡,光的衍射讓成像分辨率限制在大約250 nm。如今,超分辨率技術可以將此提高10倍以上。這種技術主要通過三種方法實現:單分子定位顯微鏡,包括光敏定位顯微鏡(PALM)和隨機光學重建顯微鏡(STORM);結構照明顯微鏡(SIM);以及受激發射損耗顯微鏡(STED)。如何選擇超分辨率

    新型超分辨顯微鏡測試熒光片特性與應用簡介

    介紹一種最新的超分辨顯微鏡測試熒光片??近年來,超高分辨率顯微鏡SIM,STED,dstorm顯微鏡越來越普及,高端熒光顯微系統由于其高分辨,高靈敏度的特點,成像系統的校準顯得尤為重要。最近德國GATTA公司發布了新的標準熒光樣品片,KOSTER & GATTA 細胞系列標準熒光片。 此系列標準

    季銨哌嗪如何實現熒光超分辨率成像?

      近年來,先進的熒光成像技術得到了快速的發展,但是與成像技術的治療進化相比,具有足夠亮度和光穩定性的染料的發展仍然緩慢,如單分子定位顯微鏡(SMLM),其分辨率超過了衍射極限。但是熒光團亮度不足成為了超分辨顯微鏡發展的一大瓶頸,這也對體內細胞動力學研究構成了重要的限制。比如羅丹明染料被廣泛應用,但

    超分辨率激光共聚焦顯微鏡

      超分辨率激光共聚焦顯微鏡是一種用于化學、生物學領域的分析儀器,于2018年7月24日啟用。  技術指標  1.在所有掃描方式下,均可以進行360°掃描旋轉,0.1°步進,同時可以變倍以及移動掃描區域的中心。 2.掃描光學變倍≥40X,最好縮小≤0.6倍。 3.最大掃描分辨率≥8000 x 800

    效應導向分析在新污染物篩選中的應用

      分析測試百科網訊 2015年10月17日,第二屆全國質譜分析學術報告會(質譜大會)在浙江大學紫荊港校區體育館盛大開幕。中國科學院生態環境研究中心 江桂斌  來自中國科學院生態環境研究中心的江桂斌院士帶來了題為《效應導向分析在新污染物篩選中的應用》的報告。  江桂斌在報告中表示 進入環境和食品的化

    我國在細胞凋亡熒光成像分析及藥物篩選方法取得進展

      腫瘤細胞凋亡與癌癥的發生、發展、死亡密切相關,對藥物誘導的腫瘤細胞凋亡進行檢測,可以作為藥物篩選以及判定抗腫瘤藥物治療效果的依據,在腫瘤治療中發揮著重要作用。細胞色素c(Cyt c)是細胞凋亡早期信號的重要標志物,在癌細胞的凋亡進程中起到關鍵作用。通過監測細胞凋亡進程中Cyt c的釋放水平,有助

    倒置熒光顯微鏡在油墨印刷領域的應用

    油墨是印刷過程中用于形成圖文信息的物質,因此油墨在印刷中作用非同小可,它直接決定印刷品上圖像的階調、色彩、清晰度等。以下是廣州某印刷廠采用明美倒置熒光顯微鏡MF52和成像系統MC20-N,拍攝的熒光觀察印刷制品的效果圖:金相樣品1金相樣品2

    熒光顯微鏡在細胞化學領域的重要應用

      熒光顯微鏡技術中以生物標本為對象,觀察神經細胞或神經纖維、抗原、抗體、彈力纖維、膠原纖維、血細胞核和細胞質,鑒別腫瘤細胞和正常細胞,鑒別死細胞與活細胞,鑒別幼稚細胞與成熟細胞,鑒別細菌種類,鑒別病毒類別等等實質上可以歸結為一種方法,即細胞化學。實質上都是用不同熒光物質選擇性地結合細胞結構、細菌結

    熒光顯微鏡在細胞化學領域的重要應用

     熒光顯微鏡技術中以生物標本為對象,觀察神經細胞或神經纖維、抗原、抗體、彈力纖維、膠原纖維、血細胞核和細胞質,鑒別腫瘤細胞和正常細胞,鑒別死細胞與活細胞,鑒別幼稚細胞與成熟細胞,鑒別細菌種類,鑒別病毒類別等等實質上可以歸結為一種方法,即細胞化學。實質上都是用不同熒光物質選擇性地結合細胞結構、細菌結構

    人体艺术视频