高產學者Nature揭示RNA甲基化的新功能
MicroRNA(miRNA)是一類約22nt大小的內源RNA,在基因表達中起著重要的調控作用,參與了多種生理和病理過程。miRNA生成是一個復雜的過程,初級miRNA(pri-miRNA)需要經過細胞核和細胞質內的一系列加工才能形成成熟的miRNA。 整個流程的第一步是microprocessor復合體加工pri-miRNA。microprocessor復合體由RNA結合蛋白DGCR8和內切酶Drosha組成,DGCR8負責識別pri-miRNA莖環結構,然后招募DROSHA切割雙鏈RNA,生成前體miRNA(pre-miRNA)。雖然人們對pri-miRNA加工機制研究得比較透徹,但至今還不清楚DGCR8在眾多轉錄本二級結構中識別并結合pri-miRNA的機制。 洛克菲勒大學的研究團隊發現,m6A是促進miRNA生成的關鍵性轉錄后修飾。這項研究發表在三月十八日的Nature雜志上,文章的通訊作者是洛克菲勒大學副教授S......閱讀全文
m6A修飾新功能——調控染色質狀態和轉錄活性
m6A是真核生物中最常見的一類化學修飾,能夠在多種生物過程中發揮重要作用,包括癌癥發生發展、細胞分化、壓力應答、免疫反應以及神經發育等方面。目前大部分研究主要探究m6A對蛋白編碼基因的調控——即影響mRNA穩定性或翻譯效率。2020年1月17日,美國芝加哥大學何川,中科院北京基因組研究所韓大力和同濟
揭秘m6A修飾新功能----調控染色質狀態和轉錄活性
m6A是真核生物中最常見的一類化學修飾,能夠在多種生物過程中發揮重要作用,包括癌癥發生發展、細胞分化、壓力應答、免疫反應以及神經發育等方面。目前大部分研究主要探究m6A對蛋白編碼基因的調控——即影響mRNA穩定性或翻譯效率。 2020年1月17日,美國芝加哥大學何川,中科院北京基因組研究所
揭示腸道細菌調控表觀轉錄組修飾促進結直腸癌轉移機制
結直腸癌是常見惡性腫瘤之一,是全世界發病人數第三、死亡人數第二的惡性腫瘤。結直腸癌在我國同樣不容樂觀。盡管結直腸癌的治療手段不斷發展,但晚期轉移性結直腸癌患者的預后生存仍然不理想,我們需要對結直腸癌的轉移機制有更深刻的認識。 近年來,隨著宏基因組測序等研究手段的不斷進展,人們發現腸道菌群能廣泛
揭秘m6A修飾新功能----調控染色質狀態和轉錄活性
文章導讀 m6A是真核生物中最常見的一類化學修飾,能夠在多種生物過程中發揮重要作用,包括癌癥發生發展、細胞分化、壓力應答、免疫反應以及神經發育等方面。目前大部分研究主要探究m6A對蛋白編碼基因的調控——即影響mRNA穩定性或翻譯效率。 2020年1月17日,美國芝加哥大學何川,中科院
Nature:RNA-修飾研究有助表觀轉錄組學進一步發展
這是一個與 mRNA 結合的細菌核糖體的分子模式圖,該核酸蛋白復合體正在合成蛋白質。 隨著科研人員逐漸揭開 RNA 修飾的奧秘,幫助我們了解表觀轉錄組學(epitranscriptomics)的工具也變得越來越多了。 2004 年,以色列特拉維夫大學(Tel Aviv University
北京基因組所揭示共轉錄m6A修飾建立機制及功能
4月2日,中國科學院北京基因組研究所(國家生物信息中心)任捷團隊和楊運桂團隊,在《分子細胞》(Molecular?Cell)上在線發表了題為DDX21 mediates co-transcriptional RNA m6A modification to promote transcription
生物物理所揭示N端乙酰化修飾促進Sir3的轉錄沉默功能
8月11日,Nature structural & Molecular Biology 在線發表了中科院生物物理研究所生物大分子國家重點實驗室許瑞明課題組的最新研究成果。該文章題為Nα-acetylated Sir3 stabilizes the conformation of a nu
PEG修飾及其修飾GLP1的意義
PEG修飾是一個使多肽或蛋白質在治療或生物技術方面的效力得以提高的重要過程。當PEG以適當的方式連接在蛋白質或多肽上時,它能改變許多的特征,而主要的生物活性功能,如酶活性或特異結合位點,可以保留下來。PEG修飾通過如下幾種途徑改善藥物的性能。首先,PEG連接在蛋白質或多肽的表面上,提高了它的分子大小
多肽熒光標記——FITC修飾和AMC修飾
熒光標記所依賴的化合物稱為熒光物質。熒光物質是指具有共軛雙鍵體系化學結構的化合物,受到紫外光或藍紫光照射時,可激發成為激發態,當從激發態恢復基態時,發出熒光。熒光標記技術指利用熒光物質共價結合或物理吸附在所要研究分子的某個基團上,利用它的熒光特性來提供被研究對象的信息。熒光標記的無放射物污染,操
多肽熒光標記——FITC修飾和AMC修飾
熒光標記所依賴的化合物稱為熒光物質。熒光物質是指具有共軛雙鍵體系化學結構的化合物,受到紫外光或藍紫光照射時,可激發成為激發態,當從激發態恢復基態時,發出熒光。熒光標記技術指利用熒光物質共價結合或物理吸附在所要研究分子的某個基團上,利用它的熒光特性來提供被研究對象的信息。熒光標記的無放射物污染,操
轉錄圖譜的轉錄圖譜的意義
在于它能有效地反應在正常或受控條件中表達的全基因的時空圖。通過這張圖可以了解某一基因在不同時間不同組織、不同水平的表達;也可以了解一種組織中不同時間、不同基因中不同水平的表達,還可以了解某一特定時間、不同組織中的不同基因不同水平的表達。人類基因組是一個國際合作項目:表征人類基因組,選擇的模式生物的D
RNA的轉錄和逆轉錄
轉錄是以DNA為模板合成RNA的過程,經過轉錄DNA分子中的貯存信息傳遞到RNA分子中,再由mRNA做為模板合成蛋白質分子。逆轉錄也是從RNA的一個特定位置開始的,以RNA分子中的一條鏈為模板,在逆轉錄酶的作用下,以四種脫氧核苷酸為原料,合成方向仍是5'→3',完成cDNA的合成。大
RNA復制、轉錄與逆轉錄
轉錄是以DNA為模板合成RNA的過程,經過轉錄DNA分子中的貯存信息傳遞到RNA分子中,再由mRNA做為模板合成蛋白質分子。逆轉錄也是從RNA的一個特定位置開始的,以RNA分子中的一條鏈為模板,在逆轉錄酶的作用下,以四種脫氧核苷酸為原料,合成方向仍是5'→3',完成cDNA的合成。大
RNA加工修飾
中文名RNA加工修飾所屬領域生物學定義RNA加工修飾,主要加工方式是切斷和堿基修飾,真核生物tRNA前體一般無生物學特性,需要進行加工修飾。
翻譯后修飾
中文名翻譯后修飾外文名Post-translational modification定義翻譯后修飾是指蛋白質在翻譯后的化學修飾。對于大部分的蛋白質來說,這是蛋白質生物合成的較后步驟。
多肽熒光標記——FITC修飾和AMC修飾(一)
熒光標記所依賴的化合物稱為熒光物質。熒光物質是指具有共軛雙鍵體系化學結構的化合物,受到紫外光或藍紫光照射時,可激發成為激發態,當從激發態恢復基態時,發出熒光。熒光標記技術指利用熒光物質共價結合或物理吸附在所要研究分子的某個基團上,利用它的熒光特性來提供被研究對象的信息。熒光標記的無放射物污染,操作簡
多肽熒光標記——FITC修飾和AMC修飾(二)
(2)在整條肽中的某個Lys側鏈接入FITC,Lys側鏈為末端為-NH2的四碳直鏈烷基,直接起到了降低空間位阻的作用。這種修飾方式能夠靈活的在整條肽中任何位置進行FITC修飾,而不僅僅局限于末端。我們所采用的FITC修飾多肽的兩種形式,都具有操作簡便,成功率高,容易分離純化等優點。2.AMC修飾7-
轉錄因子的轉錄調控區的介紹
同一家族的轉錄因子之間的區別主要在轉錄調控區。 轉錄調控區包括轉錄激活區(transcription activation domain)和轉錄抑制區(transcription repression domain)二種。近年來,轉錄的激活區被深入研究。它們一般包含DNA結合區之外的30-10
關于體外轉錄的轉錄條件介紹
轉錄模板必須滿足: 1. 在基因組全長克隆過程中,在正向引物5‘末端添加T7啟動子序列; 2. 以T7啟動子作為體外轉錄啟動子,在啟動子后面靶位序列連續帶有3個G,轉錄效率最 高; 3. 在正向引物5/端添加一個帽子G,有利于提高體外轉錄RNA分子的侵染活性。
核酸的修飾酶
The restriction/modification system in bacteria is a?small-scale immune systemfor protection from infection by foreign DNA.?W. Arber and S. Linn (1969
修飾堿基的概念
又稱修飾堿基,這些堿基在核酸分子中含量比較少,但他們是天然存在不是人工合成的,是核酸轉錄之后經甲基化、乙酰化、氫化、氟化以及硫化而成。
修飾堿基的概念
又稱稀有堿基,這些堿基在核酸分子中含量比較少,但他們是天然存在不是人工合成的,是核酸轉錄之后經甲基化、乙酰化、氫化、氟化以及硫化而成。
DNA修飾的概念
中文名稱DNA修飾英文名稱DNA modification定 義DNA合成后,通過一系列化學加工使其結構發生某些改變。如DNA的甲基化等。應用學科遺傳學(一級學科),分子遺傳學(二級學科)
修飾系統的定義
中文名稱修飾系統英文名稱modification system定 義參與修飾作用的組成與機制。應用學科生物化學與分子生物學(一級學科),總論(二級學科)
關于轉錄因子的轉錄抑制區的介紹
也是轉錄因子調控表達的重要位點,但是對其作用機理研究尚不深入。可能的作用方式有三種:1)與啟動子的調控位點結合,阻止其它轉錄因子的結合;2)作用于其它轉錄因子,抑制其它因子的作用;3)通過改變DNA的高級結構阻止轉錄的發生。 轉錄因子必須在核內作用,才能起到調控表達的目的。因此,轉錄因子上的核
修飾堿基的作用以及常見的修飾堿基是什么?
DNA和RNA分子中還含有核酸鏈形成后經過修飾形成的其它非主要堿基。這些堿基大多是在上述嘌呤或嘧啶堿的不同部位甲基化(methylation)或進行其它的化學修飾而形成的衍生物。DNA中最常見的修飾堿基是5-甲基胞嘧啶(m5C)。RNA中有許多修飾的堿基,包括核苷類假尿苷(Ψ)、二氫尿苷(D)、肌苷
體外轉錄
·?????????In Vitro RNA Transcription?(Promega)For?in vitro?preparation single-stranded RNA probes or microgram quantities of defined RNA transcripts f
輔助轉錄因子
中文名稱輔助轉錄因子英文名稱ancillary transcription factor定 義協助RNA聚合酶同啟動子結合,并促進已結合的RNA聚合酶啟動轉錄速率的轉錄因子。應用學科細胞生物學(一級學科),細胞遺傳(二級學科)
核轉錄分析
實驗材料 cDNA0.45um 硝酸纖維素 尼龍膜 酵母 tRNA試劑、試劑盒 PBS NP-40 裂解緩: 20XSSC LNaOH 甘油儲存緩沖液 10X 轉錄緩沖液 核苷酸:ATPGTPCTP 200uCi「α32P]-UTP 10XSET 蛋占酶 K 無 RNase 的 DNase
RNA-反轉錄
?實驗材料 poly(A)+RNA反轉錄酶鼠源反轉酶 或禽源反轉錄酶試劑、試劑盒 oligo(dT)12-18 lmol LTris-Cl 1mol LTris-Cl lmol LKC1 25 mmol LMgCl2 dNTP 混合物 0.lmol LDTT RNasin實驗步驟 一材料與設備1)p