廣州生物院揭示人多能干細胞神經分化的分子調控機制
中國科學院廣州生物醫藥與健康研究院潘光錦研究組在對神經細胞命運決定的分子調控機制的研究中,發現在人多能干細胞中miRNA簇miR -379-656的一個成員——miR-376c可以促進神經干細胞分化進程,而抑制miR-376c則有相反作用。相關研究成果于8月11日在線發表在The FASEB Journal 雜志上。 miR-379-656簇,在人類基因組中定位于14號染色體的印記基因 DLK-DIO3區域,包含約50個miRNA,在哺乳動物中保守性很高,其表達主要存在于胚胎和大腦,但是其具體調控功能并不清楚。該研究表明,miR-376c可以靶向SMAD4從而抑制SMAD4的表達。SMAD4因子是 TGF-β 信號通路中的重要介導因子,它可以將胞外的TGF-β信號轉導到細胞核內,再起到調節TGF-β 信號下游基因表達的作用。TGF-β 信號已經被證實在抑制神經發育和分化,在人多能干細胞的多能性維持、在iPS細胞的誘導早期等......閱讀全文
基因魔剪”協助多能干細胞“突圍”免疫排斥!
一個是充滿希望的“種子細胞”,一個是當今基因編輯領域的神兵利器“基因魔剪”,這兩者結合,將摩擦出怎樣的火花?又會發生怎樣的故事?且聽美國加州大學的科學家娓娓道來...... 難以繞過的“天塹” 科學家經常對外宣講多能干細胞的治療潛力,它可以成熟分化為任何組織,而在干細胞移植領域,急需解決的
誘導多能干細胞2
研究證實iPSC不會增加遺傳突變發生的概率2017年2月21日,美國國立人類基因組研究所(National Human Genome Research Institute)的科研人員基于全外顯子組測序分析,證實iPSC的多數突變來自親代成纖維細胞中的罕見遺傳突變,并證實細胞重編程過程不會增加遺傳
誘導多能干細胞5
利用iPSC首次實現體外制造造血干細胞2017年5月17日,美國哈佛醫學院的科研人員首次利用7個轉錄因子,將成體細胞來源的iPSC轉化為造血干細胞,其具有與天然造血干細胞“極其相似”的特性,該成果有望解決血液和骨髓供體不足的問題,對血液疾病的治療具有重要意義。相關研究以Haematopoietic
誘導多能干細胞4
美國利用抗體將成體細胞重編程為多能干細胞2017年9月11日,美國Scripps研究所的科研人員開發出一種利用抗體誘導成體細胞重編程為多能干細胞的新方法,科研人員篩選出能夠取代重編程轉錄因子的四種抗體,通過將其作用于細胞表面的特異性抗原,模擬動物發育中的天然通道,成功將小鼠的成纖維細胞轉變為iPSC
誘導多能干細胞3
建立具有胚內和胚外發育潛能的新型多能干細胞2017年4月6日,北京大學與美國Salk生物學研究所的科研人員利用小分子化合物組合,在國際上首次構建出一種具有全能性特征的新型多能干細胞——“潛能擴展的多能干細胞(extended pluripotent stem cells,EPScells)”
誘導多能干細胞6
利用iPSC成功控制猴子帕金森癥狀兩年2017年8月30日,日本京都大學的科研人員將人類iPSC來源的多巴胺能祖細胞移植到患帕金森病的食蟹猴體內,發現食蟹猴的帕金森病癥狀在兩年內得到持續改善,且沒有產生任何危險的副作用。相關研究以Human iPS cell-derived dopaminerg
多能干細胞的來源
多能干細胞的簡單獲得:人類多能性干細胞系的建立有兩個來源,其方法與以往在動物模型中建立的方法相同。(1) 在Dr. Thomson進行的工作中,他從人類胚胎的囊胚期內細胞群中直接分離多能干細胞。Dr. Thomson從IVF(體外受精)臨床實驗室得到胚胎,這些胚胎是不育癥臨床治療不需要的,用于繁殖,
多能干細胞的來源
多能干細胞的簡單獲得人類多能性干細胞系的建立有兩個來源,其方法與以往在動物模型中建立的方法相同。(1) 在Dr. Thomson進行的工作中,他從人類胚胎的囊胚期內細胞群中直接分離多能干細胞。Dr. Thomson從IVF(體外受精)臨床實驗室得到胚胎,這些胚胎是不育癥臨床治療不需要的,用于繁殖
多能干細胞的簡介
多能干細胞(Pluripotent stem cell,Ps)是當前干細胞研究的熱點和焦點。它可以分化成體內所有的細胞,進而形成身體的所有組織和器官。因此,多能干細胞的研究不僅具有重要的理論意義,而且在器官再生、修復和疾病治療方面極具應用價值。但是過去認為多能干細胞只能從人胚胎中獲得。 多能干
多能干細胞的來源
多能干細胞的簡單獲得人類多能性干細胞系的建立有兩個來源,其方法與以往在動物模型中建立的方法相同。(1) 在Dr. Thomson進行的工作中,他從人類胚胎的囊胚期內細胞群中直接分離多能干細胞。Dr. Thomson從IVF(體外受精)臨床實驗室得到胚胎,這些胚胎是不育癥臨床治療不需要的,用于繁殖
多能干細胞的簡介
多能干細胞(Pluripotent stem cell,Ps)是當前干細胞研究的熱點和焦點。它可以分化成體內所有的細胞,進而形成身體的所有組織和器官。因此,多能干細胞的研究不僅具有重要的理論意義,而且在器官再生、修復和疾病治療方面極具應用價值。但是過去認為多能干細胞只能從人胚胎中獲得。 多能干
誘導多能干細胞1
導語2006年,日本科學家山中伸彌(Shinya Yamanaka)團隊利用逆轉錄病毒將4個轉錄因子轉入成體細胞,進而實現了“生命時鐘”的逆轉,將其轉變為誘導多能干細胞(induced pluripotent stemcells,iPSC)。近年來,iPSC技術不斷改進,同時展現出
干細胞的分類——多能干細胞、但能干細胞
1、多能干細胞:即能產生多種類型的細胞但失去了發育成完整個體能力的一類干細胞。如間充質干細胞,其不僅存在于骨髓中,在脂肪、骨骼、肝臟、脊髓、肺以及臍帶中都能分離和制備間充質干細胞。間充質干細胞具有能支持造血和促進造血干細胞植入、調節免疫以及分離培養操作簡便等特點,正日益受到人們的關注。隨著間充質干細
Cell-Metabolism:-多能干細胞命運中的營養素-多能干細胞
多能干細胞模擬了早期哺乳動物體外發育的某些特征。中等供給的營養能影響自我更新、譜系規范和多能干細胞的早期分化。然而,哪些特定的營養素支持這些不同的結果,以及它們的作用機制,仍在積極的研究中。在這里,作者評估了影響多能干細胞命運的營養物質及其代謝轉化的可用數據。作者還討論了在這一基礎和實際重要性日
Cell子刊綜述:多能干細胞的基因組編輯
具有敲除或突變等位基因的人類多能干細胞(hPSCs),可以通過定制設計的核酸酶產生。轉錄激活因子樣效應物核酸酶(TALENs)和成簇規律間隔短回文重復序列(CRISPR)-Cas9核酸酶,是編輯hPSC基因組最常用的技術。 1月6日,Cell子刊《Cell Stem Cell》在線發表了來自哈佛
多能造血干細胞造血原理
由造血干細胞定向分化、增殖為不同的血細胞系,并進一步生成血細胞。人類造血干細胞首先出現于胚齡第2~3周的卵黃囊,第4周胎盤開始發揮造血功能。在胚胎早期(第2~3月)造血功能延伸至肝、脾,第5個月又從肝、脾遷至骨髓。在胚胎發育期,胎盤是一個重要的造血組織,胚胎末期一直到出生后。 干細胞可以救助很
誘導多能干細胞的優點
與經典的胚胎干細胞技術和體細胞核移植技術不同,iPS技術不使用胚胎細胞或卵細胞,因此沒有倫理學的問題。利用iPS技術可以用病人自己的體細胞制備專有的干細胞,所以不會有免疫排斥的問題。
多能干細胞的來源簡介
多能干細胞的簡單獲得人類多能性干細胞系的建立有兩個來源,其方法與以往在動物模型中建立的方法相同。 (1) 在Dr. Thomson進行的工作中,他從人類胚胎的囊胚期內細胞群中直接分離多能干細胞。Dr. Thomson從IVF(體外受精)臨床實驗室得到胚胎,這些胚胎是不育癥臨床治療不需要的,用于
多能干細胞的功能介紹
多能干細胞(Pluripotent Stem Cells)是一類具有自我更新、自我復制能力的多潛能細胞。在一定條件下,它可以分化成多種APSC多能細胞,多能干細胞(PSC)具有分化出多種細胞組織的潛能,但失去了發育成完整個體的能力,發育潛能受到一定的限制。
多能干細胞的理論意義
多能干細胞(Pluripotent stem cell,PSC)是當前干細胞研究的熱點和焦點。它可以分化成體內所有的細胞,進而形成身體的所有組織和器官。因此,多能干細胞的研究不僅具有重要的理論意義,而且在器官再生、修復和疾病治療方面極具應用價值。但是過去認為多能干細胞只能從人胚胎中獲得。
多能干細胞的基本介紹
多能干細胞(Stem Cells)是一類具有自我更新、自我復制能力的多潛能細胞。在一定條件下,它可以分化成多種APSC多能細胞,多能干細胞(Ps)具有分化出多種細胞組織的潛能,但失去了發育成完整個體的能力,發育潛能受到一定的限制。 具有發育成多個胚層細胞的能力。 實際上,真正意義上的哺乳動物
關于多能干細胞的誘導干細胞的介紹
iPS技術是干細胞研究領域的一項重大突破,它回避了歷來已久的倫理爭議,解決了干細胞移植醫學上的免疫排斥問題,使干細胞向臨床應用又邁進了一大步。隨著iPS技術的不斷發展以及技術水平的不斷更新,它在生命科學基礎研究和醫學領域的優勢已日趨明顯。 美國哈佛大學研究人員采取添加特殊化合物的方法,將體細胞
系列研究闡明多能干細胞基因組穩態維持新機理
多能干細胞(Pluripotent stem cells, PSCs)因其在體外具有無限增殖和分化為不同類型細胞的潛能,在再生醫學領域中具有廣泛應用前景,也成為目前臨床上最具潛能的成藥細胞。PSCs制備過程中的標準化、規模化及細胞質量穩定性是其走向臨床應用的先決條件.但人PSCs在體外擴增培養過
多能造血干細胞的主要作用
骨髓移植技術 生命科 學是二十世紀發展最為迅猛的學科之一,已經成為自然科學中最引人注目的領域。 1957 年,美國華盛頓大學多納爾·托瑪斯發現正常人的骨髓移植到病人體內,可以治療造血功能障礙。這一技術的發現,使多納爾·托瑪斯本人榮獲了諾貝爾獎。 這一技術很快得到全世界的認可,并已成為根治白
多能干細胞的潛在應用介紹
有諸多理由可說明多能干細胞對科學和人類健康的進展的重要性。最基本的,多能干細胞可以幫助我們理解人類發育過程中的復雜事件。該項工作的首要目標是,確定參與導致細胞特化的決定因素。雖然我們已知基因的啟動和關閉是該進程的核心,但我們對這些"決定"基因以及使之啟動或關閉的因素知之甚少。人類最嚴重的醫學難題
誘導性多能干細胞(一)
誘導多能干細胞inducedpluripotentstemcellsiPS:2006年日本京都大學ShinyaYamanaka在世界著名學術雜志《細胞》上率先報道了誘導多能干細胞的研究。他們把Oct3/4,Sox2、c-Myc和Klf4這四種轉錄因子基因克隆入病毒載體,然后引入小鼠成纖維細胞,發現可
誘導性多能干細胞(四)
優點與經典的胚胎干細胞技術和體細胞核移植技術不同,iPS技術不使用胚胎細胞或卵細胞,因此沒有倫理學的問題。利用iPS技術可以用病人自己的體細胞制備專有的干細胞,所以不會有免疫排斥的問題。成果發布2007年11月20日,美國 威斯康星大學詹姆斯·湯姆森的研究小組在《 科學》雜志發表體細胞轉變成“誘導性
誘導性多能干細胞(六)
科學丑聞2012年10月就iPS干細胞(誘導多能干細胞)制作心肌細胞移植給重癥心臟病患者的研究成果屬于虛構一事,東京大學醫院的特任研究員森口尚史自己承認了造假的事實。展望由于iPS干細胞自身的安全性問題,到2012為止,iPS干細胞還無法應用于臨床治療,要得到安全實用的有臨床應用價值的治療型iPS干
誘導性多能干細胞(七)
新方法研究人員用來產生誘導性多能干細胞(induced pluripotent stem cells, iPSCs)的方法既花時間而且效率又低。按照當前的方法,當把四種轉錄因子導入成體細胞如皮膚細胞中時,利用上千個皮膚細胞最終只能獲得幾個iPSCs。為此,在這項新的研究中,來自美國桑福德-伯納姆醫學
誘導性多能干細胞(八)
安全性日本科學家利用重編程小鼠 干細胞生成了皮膚和骨髓,并將它們移植到基因相同的小鼠體內,結果發現這并不會引發強烈的免疫反應。對免疫反應的恐懼可能被高估了。應該可以讓那些指望利用誘導多能干細胞(iPSCs)來治療疾病的研究人員消除疑慮。2011年,同樣發表在Nature雜志上的一項研究發現:iPSC