• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>
  • 發布時間:2022-10-14 13:55 原文鏈接: 遺傳算法的特點

    (1)算法從問題解的串集開始搜索,而不是從單個解開始。這是遺傳算法與傳統優化算法的極大區別。傳統優化算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳算法從串集開始搜索,覆蓋面大,利于全局擇優。

    (2)遺傳算法同時處理群體中的多個個體,即對搜索空間中的多個解進行評估,減少了陷入局部最優解的風險,同時算法本身易于實現并行化。 

    (3)遺傳算法基本上不用搜索空間的知識或其它輔助信息,而僅用適應度函數值來評估個體,在此基礎上進行遺傳操作。適應度函數不僅不受連續可微的約束,而且其定義域可以任意設定。這一特點使得遺傳算法的應用范圍大大擴展。 

    (4)遺傳算法不是采用確定性規則,而是采用概率的變遷規則來指導他的搜索方向。 

    (5)具有自組織、自適應和自學習性。遺傳算法利用進化過程獲得的信息自行組織搜索時,適應度大的個體具有較高的生存概率,并獲得更適應環境的基因結構。

    (6)此外,算法本身也可以采用動態自適應技術,在進化過程中自動調整算法控制參數和編碼精度,比如使用模糊自適應法。


    人体艺术视频