• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>
  • 發布時間:2022-04-19 14:27 原文鏈接: 包涵體染色的方法有哪些

    包涵體染色的方法有哪些?原理是什么
    包涵體染色的方法有哪些?原理是什么
    包涵體染色的方法有哪些?原理是什么

    蛋白包涵體-溶解原理及方法2009年03月15日;維持包涵體內蛋白質結構的作用力是分子內的作用力,;1.遵循標準;包涵體蛋白質的溶解同樣是一個工藝的關鍵的步驟;(1)快速溶解的動力學;;(2)與蛋白質的結合是可逆的;;(3)對細胞碎片的分離方法沒有干擾作用;;(4)對溫度沒有依賴作用;;(5)抑制蛋白質酶的降解作用;;(6)與蛋白質的氨基沒有化學修飾作用;;

    維持包涵體內蛋白質結構的作用力是分子內的作用力,這種作用力也維持天然蛋白質的穩定性的結構。先前有報道這種作用力是共價鍵結合的,但是,現在趨向于一致,就是維持包涵體內部的蛋白質的緊密的結構的是非共價鍵的作用力。二硫鍵,無論是正確的還是錯誤的二硫鍵,在維持內部蛋白質的緊密的結構中都沒有發揮直接的作用。最經常的獲得活性蛋白質的第一步是溶解這些包涵體蛋白質,溶解液是使這些包涵體蛋白質完全變性的成分,當蛋白質被溶解以后,則進入到蛋白質的體外折疊的過程。

    1. 遵循標準

    包涵體蛋白質的溶解同樣是一個工藝的關鍵的步驟。溶劑的選擇會影響后續的操作、最終的各種蛋白質的收率以及最終的成本,必須遵循以下的標準:

    (1) 快速溶解的動力學;

    (2) 與蛋白質的結合是可逆的;

    (3) 對細胞碎片的分離方法沒有干擾作用;

    (4) 對溫度沒有依賴作用;

    (5) 抑制蛋白質酶的降解作用;

    (6) 與蛋白質的氨基沒有化學修飾作用;

    (7) 在可能的情況下,選擇最低的溶解濃度和廉價的溶劑,并適于以后的復性方法。

    2. 溶解包涵體的試劑

    最經常使用溶解包涵體的試劑包括離液劑或者去垢劑。

    最經常使用的溶解和制備蛋白質的離子型的離液劑最早于1969年Hatefi等人發展的離子型的去垢劑如SDS是另外一種溶解包涵體蛋白質和膜蛋白質的試劑,但是一般不用來大規模的生產,而是用來定性。除了強酸、強堿和利用有機溶劑來提取疏水性很強的蛋白質以外,其他的變性方法如非可逆的共價修飾在工業的大規模生產中很少用到。一旦蛋白質被溶解,蛋白質中的巰基很容易快速地氧化并形成共價的聚集體或者分子內錯配的二硫鍵,然后這些蛋白質就不能再進行折疊。為了防止氧化,可以使這些基團或者利用緩沖液中含有低分子量的疏基試劑保持在還原的狀態或形成磺酸鹽或者形成混合的二硫鍵。

    (1)去垢劑

    去垢劑是一種最經濟的溶解包涵體蛋白質的方法,一個最大的優點是溶解的蛋白質有可能保持全部的生物活性,說明在此條件下保持了蛋白質的四級結構。最重要的是稀釋以后蛋白質的聚集比其它溶劑生成的很
    少。陽離子型、陰離子型的和非離子型的去垢劑都可以使用,使用時的濃度一般高于去垢劑的臨界膠束濃度(CMC ),通常是0.5-5%。

    SDS僅僅在大量生產牛生長激素、干擾素和白介素-2中用到。SDS由于具有較低的臨界膠束濃度(CMC)而使得結合到蛋白質分子上的SDS比較難于除去。由于N-十二烷肌氨酸它的CMC比SDS高0.4%,也被用來溶解包涵體蛋白質并可用稀釋的方法使蛋白質復性,殘余的去垢劑可以使用陰離子交換色譜或者超濾的方法除去。這種去垢劑是一種比較溫和的去垢劑,可以選擇性地溶解一些包涵體,但是不能溶解完全的變性的蛋白質的聚集體和大腸桿菌的內膜的蛋白質分子。使用去垢劑一個主要的缺點是對以后的純化和復性的步驟的干擾,去垢劑結合到蛋白質上的強度大離子交換色譜復性蛋白質小不同,比較難于除去,并干擾離子交換和疏水相互作用色譜的過程,在變性的濃度時超濾膜會吸附這些變性劑。所以復性后需要盡量洗滌這些去垢劑,也可以使用環狀糊精鏈狀糊精或者環狀淀粉從復性緩沖液中提取去垢劑。

    一個不容忽視的問題是去垢劑可以溶解全部的膜蛋白質中的蛋白質酶,這些蛋白質酶的活性在去垢劑的存在的情況下被活化,可能造成溶解和復性過程的收率的降低。蛋白質復性的收率可以通過以下的方法來提高: a) 先期使用可以溶解膜蛋白質但是不溶解包涵體蛋白質的溶劑盡量洗滌包涵體蛋白質;

    b) 包涵體的含有的菌體碎片被完全除去;

    c) 溶解包涵體的液體中含有蛋白質酶的抑制劑,如EDTA,苯甲基磺酰氟(PMSF )等 。

    (2)離液劑

    其它的離液劑也被用來溶解包涵體蛋白質,最主要的溶解包涵體蛋白質的離液劑是鹽酸胍和尿素,這是最經常使用的溶解試劑,一般情況下選擇6-8mo1/L的濃度,蛋白質濃度在1-10mg/mL。

    在溶解色氨酸合成酶A的過程,發現陽離子的溶解能力順序是Gdm+ > Li+ > K+ > Na+,陰離子的順序是SCN- > I- > Br- >Cr-。一些離液劑由于它們的溶液比鹽酸胍和尿素有更高的密度和黏度而不適合用于溶解包涵體,因為利用離心和色譜分離起來比較困難。

    為了溶解包涵體蛋白質需要的尿素或者鹽酸胍的濃度根據蛋白質的不同而不同。如果蛋白質天然形態需要溶解的變性劑的濃度不能獲得,則在溶解包涵體時需要首先確定離液劑的濃度。

    鹽酸胍由于比較貴,所以一般用來溶解一些附加值比較高的藥物蛋白質分子,選擇鹽酸胍作為溶解試劑,是因為鹽酸胍是一種比脲更為強烈的變性劑,甚至可以溶解脲所不能溶解的包涵體;尿素,由于可能被自發的形成的氰酸鹽或者已有的氰酸鹽的污染,特別是在堿性環境中,從而造成蛋白質的自由的氨基被不可逆的修飾。消除此種影響的方法是用陰離子的緩沖系統如Tris-HCl溶解脲或者脲在使用之前利用陰離子交換色譜純化,并且配制的溶解和復性的緩沖液在當天使用。脲溶液中影響蛋白質變性的因素與鹽酸胍的不同。溶在脲中的蛋白質受到pH和離子強度的影響,從而影響電荷的蛋白質殘基之間的電荷作用,但是由于鹽酸胍含有高濃度的離子強度,所以這兩個因素的影響很少。

    (3)混合溶劑

    一般情況下去垢劑并不聯合使用,Lilly等人發現去垢劑和尿素的混合液有效的摩爾濃度較低。尿素和去垢
    劑型的鹽混合可以使蛋白質變性,但是尿素和非去垢劑的鹽如氯化鈉反而降低包涵體蛋白質的溶解性,所以要避免使用。

    去垢劑結合其他的試劑或者溶解增強劑也被使用,發現尿素和乙酸,尿素和二甲亞楓,尿素和高pH等是比較有效的溶解包涵體蛋白質的方法。

    高壓(1-2kbar)、超聲也可以溶解包涵體蛋白質,此時使用的溶解試劑濃度可以比較低,便于后續的復性步驟。

    3. 極端pH

    酸堿度也是比較廉價的有效的溶解包涵體的方法。最經常使用酸的是有機酸,濃度在5-80%之間。Gavif和Better使用低的(pH≤2.6)和高溫(85℃ )溶解抗真菌的重組蛋白質的膚段,低溫和高PH需要溶解時間要長。Reddy和合作者也使用20%乙酸溶解一種麥芽糖結合的蛋白質。但是,同樣的一些不可逆的修飾作用或者酸降解會在極端pH下發生,所以此種方法并不是經常使用的溶解包涵體的方法。

    高pH(≥12)也被用來溶解生長激素和原胰島素。在高pH下一些蛋白質同樣可能發生非可逆的變性,原因在于半胱氨酸在堿性條件下的脫硫過程。所以這種方法盡管比較簡單、廉價,同樣僅僅用于一些特定的蛋白質,特別對于藥用蛋白質一般不采用這種方法。

    再登陸http://www.biox.cn/content/20050415/10541.htm

    摘要 基因重組蛋白在大腸桿菌中表達時,由于表達量高,往往形成無生物活性的包涵體。包涵體必須經過變性和復性的過程才能獲得有活性的重組蛋白。如何提高基因重組蛋白質的復性率,是生物工程技術的一個研究熱點。對近年來的重組蛋白質的復性方法做一評述,為研究蛋白質折疊以及復性技術的進一步應用提供依據。
    關鍵詞 重組蛋白 包涵體 復性 二硫鍵
    到目前為止,人們表達的重組蛋白質已有4000多種,其中用E.coli表達的蛋白質要占90%以上,盡管基因重組技術為大規模生產目標蛋白質提供了嶄新的途徑,然而人們在分離純化時卻遇到了意想不到的困難,即這些蛋白質在E.coli中絕大多數是以包涵體形式存在,重組蛋白不僅不能分泌到細胞外,反而在細胞內聚集成沒有生物活性的直徑約0.1~3.0μm的固體顆粒[1]。自從應用大腸桿菌體系表達基因工程產品以來,人們就一直期望得到高活性、高產量的重組蛋白。不可溶、無生物活性的包涵體必須經過變性、復性才能獲得天然結構以及生物活性,因此應該選擇一個合適的復性過程來實現蛋白質的正確折疊,獲得生物活性,近年來的研究可以使復雜的疏水蛋白、多結構域蛋白、寡聚蛋白、含二硫鍵蛋白在體外成功復性。
    包涵體形成的原因

    重組蛋白在宿主系統中高水平表達時,無論是原核表達體系或真核表達體系甚至高等真核表達體系,都會形成包涵體[2]。主要因為在重組蛋白的表達過程中,缺乏某些蛋白質折疊過程中需要的酶和輔助因子,或環境不適,無法形成正確的次級鍵等原因形成的[3]。

    1、 表達量過高,研究發現在低表達時很少形成包涵體,表達量越高越容易形成包涵體。原因可能是合成速度太快,以至于沒有足夠的時間進行折疊,二硫鍵不能正確配對,過多的蛋白間的非特異性結合,蛋白質無法達到足夠的溶解度等。

    2、 重組蛋白的氨基酸組成,一般說來含硫氨基酸越多越容易形成包涵體。

    3、 重組蛋白所處的環境:發酵溫度高或胞內pH接近蛋白的等電點時容易形成包涵體。

    4、 重組蛋白是大腸桿菌的異源蛋白,由于缺少真核生物中翻譯后修飾所需酶類,致使中間體大量積累,容易形成包涵體沉淀。

    5、 有報道認為,豐富的培養基有利于活性蛋白質的表達,當培養條件不佳時,容易形成包涵體。
    減少包涵體形成的策略

    1、 降低重組菌的生長溫度,降低培養溫度是減少包涵體形成的最常用的方法,較低的生長溫度降低了無活性聚集體形成的速率和疏水相互作用,從而可減少包涵體的形成[4]。

    2、 添加可促進重組蛋白質可溶性表達的生長添加劑,培養E.coli時添加高濃度的多醇類、蔗糖或非代謝糖可以阻止分泌到周質的蛋白質聚集反應,在最適濃度范圍內添加這些添加劑不會影響細胞的生長、蛋白質的合成或運輸,其它促重組蛋白質可溶性表達的生長添加劑還有乙醇(誘導熱休克蛋白的表達)、低分子量的巰基或二硫化合物(影響細胞周質的還原態,從而影響二硫鍵的形成)和NaCl[5]。

    3、 供給豐富的培養基,創造最佳培養條件,如供氧、pH等。

    包涵體的分離及溶解

    對于生物制藥工業來說,包涵體的形成也是有利的,不僅可獲得高表達、高純度的重組蛋白質,還可避免細胞水解酶對重組蛋白質的破壞。由于包涵體是蛋白質聚集而成的致密顆粒,分離的第一步是對培養收集的細胞進行破碎,比較有效的方法是高壓勻漿結合溶菌酶處理,然后5000~20000g離心,可使大部分包涵體沉淀,與可溶性蛋白分離,接著,包涵體沉淀需用去污劑(Triton X-100或脫氧膽酸鈉)和低濃度變性劑(2mol/L尿素或鹽酸胍等)洗滌除去脂類和膜蛋白,這一步很重要,否則會導致包涵體溶解和復性的過程中重組蛋白質的降解[6、7、8]。

    包涵體的溶解必須用很強的變性劑,如8mol/L尿素、6~8mol/L鹽酸胍,通過離子間的相互作用破壞包涵體蛋白間的氫鍵而增溶蛋白。其中尿素的增溶效果稍差,異氰鹽酸胍最強;去污劑,如SDS[7],可以破壞蛋白內的疏水鍵,可以增溶幾乎所有的蛋白,但由于無法徹底去除而不允許用在制藥行業中;酸,如70%甲酸[9],可以破壞蛋白的次級鍵從而增溶蛋白,這種方法只適合少數蛋白質。對于含有半胱氨酸的蛋白,在增溶時應加入還原劑(如DTT、GSH、β-ME)打開蛋白質中所有二硫鍵,對于目標蛋白沒有二硫鍵的有時也應使用還原劑,為含二硫鍵的雜蛋白會影響包涵體的溶解,同時還應加入金屬螯合劑,如EDTA或EGTA,用來螯合Cu2+、Fe3+等金屬離子與還原狀態的巰基發生氧化反應[10]。

    蛋白質的折疊機理

    包涵體蛋白在變性劑作用下,為可溶性伸展態,在變性劑去除或濃度降低時,就會自發的從變性的熱不穩
    狀態向熱力學穩定狀態轉變,形成具有生物活性的天然結構[11]。然而在去除變性劑的同時,重組蛋白質在體外折疊,分子間存在大量錯誤折疊和聚合,復性效率往往很低,包涵體蛋白折疊復性的效率實際上取決于正確折疊過程與聚集過程之間的競爭[1]。對于蛋白質的折疊機制,目前有多種不同的假設,但很多學者認為有一個“熔球態”的中間狀態,在“熔球態”中,蛋白質的二級結構已經基本形成,其空間結構也初具規模,再做一些局部調整就可形成正確的立體結構,總之,蛋白質的具體步驟可用下式描述[12、13、14]:
    伸展態→中間體→后期中間體→天然態體→聚集體

    在折疊反應中,從伸展態到中間體的速度是非常快的,只需要幾毫秒,但從中間體轉變為天然態的過程比較緩慢,是一個限速過程。聚集過程與復性過程相互競爭,故而應盡量避免聚集體的產生。一般認為,蛋白質在復性過程中涉及兩種疏水作用,一是分子內的疏水相互作用,可促進蛋白質正確折疊;一是部分折疊的肽鏈分子間的疏水相互作用,在復性過程中,部分折疊的中間體的疏水簇外露,分子間的疏水相互作用會導致蛋白質聚集。蛋白質的立體結構雖然由其氨基酸的順序決定,然而伸展肽鏈折疊為天然活性結構的過程還受到周圍環境的影響,如溫度、pH值、離子強度、復性時間等因素的影響。

    提高重組蛋白質折疊復性的方法

    一個有效的、理想的折疊復性方法應具備以下幾個特點:活性蛋白質的回收率高;正確復性的產物易于與錯誤折疊蛋白質分離;折疊復性后應得到濃度較高的蛋白質產品;折疊復性方法易于放大;復性過程耗時較少[15]。

    1、 透析、稀釋和超濾復性法:這三種方法是最傳統也是應用最普遍的蛋白質折疊復性方法,復性活性回收率低,而且難于與雜蛋白分離。透析法耗時長,易形成無活性蛋白質聚集體;超濾法在膜上聚集變性,易造成膜污染;稀釋法處理量太大,不利于工業放大[16]。

    2、 高蛋白濃度下的復性方法:一個成功的復性過程在于能夠在高蛋白濃度下仍能得到較高的復性率。一個方法是把變性蛋白緩慢連續或不連續地加入到復性液中[17]。在兩次蛋白加入之間,應有足夠的時間間隔使蛋白質折疊通過了易聚集的中間體階段。這是由于完全折疊的蛋白通常不會與正在折疊的蛋白一起聚集。第二種方法是用溫度跳躍策略[4]。變性蛋白在低溫下復性折疊以減少聚集,直到易聚集的中間體大都轉化為不易聚集的后期中間體后,溫度快速升高來促進后期中間體快速折疊為蛋白的天然構象。第三種方法是復性在中等的變性劑濃度下進行[18],變性劑濃度應高到足以有效防止聚集,同時又必須低到能夠引發正確復性。

    3、 添加促進劑的復性方法:包涵體蛋白質折疊復性促進劑的促進作用可以分為:穩定正確折疊蛋白質的天然結構、改變錯誤折疊蛋白質的穩定性、增加折疊復性中間體的溶解性、增加非折疊蛋白質的溶解性。通常使用的添加劑有:a、共溶劑:如PEG6000~20000,通過與中間體特異的形成非聚集的復合物,可以阻止蛋白質分子間的相互碰撞機會,減少蛋白質的聚集;b、去污劑及表面活性劑:如Trition X-100、CHAPs、磷脂、磺基甜菜堿等對蛋白質復性有促進作用,但它們能與蛋白質結合,很難去除;c、氧化-還原劑:對于含有二硫鍵的蛋白,復性過程中應加入氧化還原體系,如GSH/GSSG、DTT/GSSG、DTE/GSSG等,氧化還原系統通過促進不正確形成的二硫鍵快速交換反應,提高了正確配對的二硫鍵的產率[19];d、小分子的添加劑:如鹽酸胍或尿素、烷基脲、碳酸酰胺類等,都可阻止蛋白聚集,它們的作用可能為:穩定蛋白的活性狀態、降低非正確折疊的穩定性、增加折疊中間體的穩定性、增加解折疊狀態的穩定性。e、0.4~0.6M L-Arg:L-Arg能使得不正確折疊的蛋白質結構以及不正確連接的二硫鍵變得不穩定,使折疊向正確方向進行,可大幅度地提高包涵體蛋白質的折疊效率。f、添加分子伴侶和折疊酶:分子伴侶是指能夠結合和穩定

    人体艺术视频