因為燃燒后僅生成水,氫氣曾被視為實現碳中和目標的理想能源。
然而,目前全球約96%的氫氣生產仍依賴化石燃料。每生產1噸這種“灰氫”,就伴隨著十余噸二氧化碳排放。
氫氣的“清潔能源”標簽及其原本承載的碳中和目標在其制備過程中難以實現,更難實現產業化應用。
“要實現清潔制氫目標,必須從源頭減少碳排放。”北京大學化學與分子工程學院教授馬丁已經在金屬-碳化鉬催化劑體系深耕十余年。近日,他和合作伙伴兩天內先后在《科學》《自然》發表兩項突破性成果,向氫氣綠色生產邁出了關鍵一步。
馬丁。受訪者供圖
較傳統制氫減少38.6%碳排放
氫氣是一種二次能源,不能直接開采,而是需要從水、化石燃料等含氫物質中分解和制備。目前,傳統制氫工藝仍然以化石燃料為原料,在300℃至1200℃的高溫條件下進行反應,不但能耗巨大,而且伴隨著大量二氧化碳排放。
以應用最為廣泛的蒸汽甲烷重整(SMR)技術為例,天然氣中的甲烷可以與水蒸氣在催化劑的作用下在高溫下反應,從而生成氫氣和二氧化碳。據統計,這一化學反應制取 1千克氫氣的碳排量就超過12千克。
若不能從源頭破解氫氣生產中的碳排放問題,氫能承載的低碳愿景將難以實現。
近日,馬丁與中國科學院大學教授周武課題組、北京大學化學與分子工程學院研究員周繼寒課題組以及英國卡迪夫大學教授 Graham J. Hutchings 聯合開發了“選擇性部分重整”技術,為攻克這一難題帶來了希望。
他們以農林廢棄物轉化而來的生物乙醇為起點,將乙醇-水重整反應從傳統的完全重整路徑轉變為選擇性部分重整路徑。該路徑將反應溫度降至270℃,更為關鍵的是,反應中的碳原子不再生成二氧化碳,而是轉化為乙酸。
這也意味著,這一氫氣生產新路徑實現了在不排放二氧化碳的前提下高效生產氫氣,還可以聯產高值化學品乙酸。在這一反應路徑中,每噸乙醇約可聯產1.3噸乙酸。作為基礎化工原料,乙酸的全球年需求量超過了1500萬噸,有著廣闊的市場前景。
與傳統方法相比,這項綠色制氫-聯產化學品技術構建了“制氫-儲碳-產酸”的閉環系統,其碳排放量可以減少38.6%,為可持續的氫能經濟提供了全新的解決方案。
2月13日,這一突破性成果在《科學》發表。
團隊成員在做實驗。受訪者供圖
催化劑穩定運行超1000小時
在制氫領域,催化劑的“高活性”與“高穩定性”平衡一直是個難題。
催化劑活性和選擇性是衡量其性能的核心因素,但在實際工業應用中,穩定性才是影響生產持續性和經濟性的關鍵指標,直接關系催化劑能否真正實現大規模應用。
在甲醇-水重整(MSR)產氫催化體系中,高活性催化劑可以提升催化反應效率,但也容易在反應過程中加速失效。據相關研究報道,傳統催化劑的平均壽命不足200小時。
因此,兼具活性與穩定性的催化劑對氫能的生產和應用尤為重要。
在一次偶然的機會下,馬丁發現,貴金屬鉑(Pt)與碳化鉬、氮化鉬(α-MoC、γ-Mo2N)等活性載體構建的界面催化體系可以在較低溫度下實現制氫。如果希望把這一發現順利應用,催化劑的活性與高穩定性需要兼顧。
基于這一發現,他提出一種兼顧活性的催化劑穩定策略:在催化劑表面構筑惰性稀土氧化物的納米覆蓋層,形成納米尺度的“保護盾”,這可以保護界面催化結構,并在不影響界面結構的超高催化活性的前提下提升催化劑的穩定性。
根據實驗結果,該新型催化劑在MSR制氫反應中展現出超過1000小時的穩定性。同時,該催化劑還實現了超過1500萬的催化轉化數,保持了超高活性,創造了甲醇-水制氫催化反應的最高紀錄。
馬丁告訴《中國科學報》,這項突破還找到了界面催化劑穩定性的“通用密碼”。他發現,在釔(Y)、鐠(Pr)等稀土元素,鈣(Ca)、鍶(Sr)等廉價金屬中,均有可能實現類似的效果。這一高活性產氫催化劑穩定策略還有機會“無痛”應用在更多高性能高催化劑的設計中。
2月12日,相關成果在《自然》發表。
氫氣生產的“可持續引擎”
氫能技術尚處在發展時期,大規模的產業化應用尚未實現。歸根究底,傳統氫能生產還長期面臨著低碳、低成本、高穩定性難以兼顧的桎梏。
馬丁團隊一直致力于為氫氣的產業化尋找可能性。2014年,馬丁啟動相關研究,致力于解決綠色制氫難題。3年后,金屬-碳化鉬催化劑相關成果在《自然》雜志發表。十余年來,馬丁團隊及其合作者在金屬碳化物催化劑用于氫氣生產方面的深入研究,一步步將實驗室的發現打磨成產業化的希望。
該團隊通過催化劑設計和反應路徑優化,從源頭上降低了制氫過程的碳排放,同時,通過在催化劑表面構筑惰性納米覆蓋層,進一步突破了催化體系的穩定性瓶頸,形成了高效、穩定的制氫技術。
“目前,化工行業面臨的關鍵挑戰,是通過可持續的方法,來生產我們日常生活真正需要的產品。”馬丁說,“在這項研究中,通過綠色制氫技術,降低了能耗,緩解了氫氣儲運難題,為化工、醫藥等更多產業的低碳轉型帶來了可能性。”
馬丁表示,目前這些成果仍處于基礎研究階段,主要闡釋了產氫過程的底層科學,雖然為產業發展和應用提供了“工具箱”和“知識庫”,但他更希望研究能夠真正從實驗室“走出去”。
為了實現這一目標,馬丁已經開始了相關嘗試。
“我們開發了實驗室規模的陣列產氫裝置,并已形成專利,提供了實驗室規模的催化劑放大測試平臺,讓我們更貼近氫氣的應用現實。”馬丁同時指出,“真正實現綠色制氫還有很長的路要走。要實現產業化,還需產學研深入合作和相關政策的支持。通過政策引導推動全產業鏈協同發展,才能實現氫能的規模化、低碳化應用。”
相關論文信息:
https://doi.org/10.1126/science.adt0682
https://doi.org/10.1038/s41586-024-08483-w
近日,我所能源與環境小分子催化研究中心(509組群)鄧德會研究員團隊與新加坡南洋理工大學李昊博博士團隊合作,受邀撰寫了人工智能在催化劑設計與合成領域的Perspective評述文章,系統梳理了人工智能......
近日,中國科學院大連化學物理研究所研究員陳劍團隊和研究員鄧德會團隊合作,在鋰硫電池硫正極單原子催化劑研究方面取得新進展,合成了一種新型P配位單原子Fe催化劑,提升了鋰硫電池性能。相關成果發表在《先進功......
在催化科學領域,單原子催化劑因獨特的催化潛力而備受關注。但是,單原子催化劑的本征質量活性受限,制約其實際應用。中國科學院青島生物能源與過程研究所與蘭州化學物理研究所合作,基于少原子團簇催化劑精準可控的......
單原子催化劑(SACs)憑借最大化的金屬原子利用率、量子化的電子結構與獨特的物理化學性質,在多相催化、能源轉化、環境治理和生物醫學等領域展現出應用前景。自中國科學家率先提出單原子催化概念以來,該領域已......
記者從中國科學技術大學獲悉,該校曾杰教授團隊通過構筑納米島結構催化劑,攻克了甲烷干重整反應中催化劑極易燒結失活的難題。相關研究成果3月10日發表于國際學術期刊《自然材料》。超細金屬納米顆粒因其超高的原......
圖同步生長策略制備嵌入型酸性電解水催化劑在國家自然科學基金項目(批準號:22279019、22205038、22393911、22273011)等資助下,復旦大學張波、徐一飛、段賽、徐昕合作在電解水制......
近日,中科院大連化物所氫能與先進材料研究部碳資源小分子與氫能利用研究組(DNL1905組)孫劍研究員與內蒙古大學劉健教授等合作,發表了調控二氧化碳(CO2)加氫產物選擇性的催化劑設計綜述性文章,系統總......
氫能作為一種清潔、高效、可持續的能源,已成為全球能源轉型的重要方向。在中國“雙碳”目標引領下,氫能產業被納入國家戰略性新興產業體系。在“十四五”規劃期間,我國指出要在氫能與儲能等前沿科技和產業變革領域......
氫能被認為是未來全球能源體系的重要支柱。高效、穩定、低成本的氫能生產已成為能源科技發展的關鍵挑戰。近日,中國科學院大學教授周武團隊與北京大學教授馬丁團隊合作,在《自然》(Nature)上發表了題為Sh......
近年來,生物乙醇因可再生性、高含氫量及良好的儲運安全性,成為備受關注的綠色制氫原料。而傳統的乙醇-水重整制氫技術存在兩大難題。一是該過程通常需在400℃至600℃的高溫條件下進行,能耗高且難以避免乙醇......