• <table id="caaaa"><source id="caaaa"></source></table>
  • <td id="caaaa"><rt id="caaaa"></rt></td>
  • <table id="caaaa"></table><noscript id="caaaa"><kbd id="caaaa"></kbd></noscript>
    <td id="caaaa"><option id="caaaa"></option></td>
  • <noscript id="caaaa"></noscript>
  • <td id="caaaa"><option id="caaaa"></option></td>
    <td id="caaaa"></td>
  • 發布時間:2022-10-18 11:21 原文鏈接: γ氨基丁酸在植物體中GABA合成的介紹

      在高等植物中,GABA的代謝主要由三種酶參與完成,首先在GAD作用下,L-谷氨酸(glutamic acid,Glu)在α-位上發生不可逆脫羧反應生成GABA,然后在GABA轉氨酶(GABA transaminase,GABA-T)催化下,GABA與丙酮酸和α-酮戊二酸反應生成琥珀酸半醛,最后經琥珀酸半醛脫氫酶(succinic semialdehyde dehydrogenase,SSADH)催化,琥珀酸半醛氧化脫氫形成琥珀酸最終進入三羧酸循環(krebs circle)。這條代謝途徑構成了TCA循環的一條支路,稱為GABA支路。 [1]

      在植物中,存在于細胞質中的GAD和線粒體中的GABA-T、SSADH共同調節GABA支路代謝,其中GAD是合成GABA的限速酶。植物GAD含有鈣調蛋白(CaM)結合區,GAD活性不僅受Ca2+和H+濃度的共同調控,還受到GAD輔酶——磷酸吡哆醛(PLP)以及底物谷氨酸濃度的影響。這種雙重調節機制將GABA的細胞積累與環境脅迫的性質和嚴重程度聯系起來。冷激、熱激、滲透脅迫和機械損傷均會提高細胞液中Ca2+濃度,Ca2+與CaM結合形成Ca2+/CaM復合體,在正常生理pH條件下能夠刺激GAD基因表達,提高GAD活性;而酸性pH刺激GAD的出現是由于應激降低細胞的pH,減緩細胞受到酸性危害。植物中GABA支路被認為是合成GABA的主要途徑。目前,大多數研究集中在如何提高GAD活性實現GABA富集。

    人体艺术视频